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Background and Introduction
Bayes ian Stat is t ics



Background
Species distribution and detection errors
Species distribution and fragment occupancy are important 
concepts in biogeography and conservation biology, but 
species surveys often have detection errors, leading to 
distribution estimation biases. Therefore, it is necessary to 
clearly consider the detection probability to obtain 
accurate occupancy estimates.

Advantages of Site Occupancy Models
Site occupancy models are widely used due to their 
simplicity in using detection/non-detection data, explicit 
handling of detectability, and extensibility. They can also 
estimate or model population abundance.

Advantages of Site Occupancy Models
To study dynamic features  l ike local ext inct ion and 
colonization, occupancy models are extended to dynamic 
models, allowing site occupancy to change over time. 
These models better capture population processes and 
enhance ecological insights.

Research Objective: Develop a hierarchical 
dynamic occupancy model, using a state-
space framework to estimate site occupancy, 
extinction, colonization, and turnover rates.



Introduction of Dataset
The Crossbill Dataset is an ecological dataset. It consists of detailed data 
collected from multiple forest regions through surveys and is commonly used to 
analyze crossbill behavior.
267 1-kmsq quadrats were surveyed 3 times per year during 1999-2007.

Basic Information
• id: A unique identifier for each recorded site.
• surveys: Number of surveys conducted, representing repeated observations at the sampling point.
• det991, det992, ..., det073 : Detection indicators, showing whether crossbill birds were detected at different 

time points or under different conditions (1 for detected, 0 for not detected, NA for missing data).

Important information extraction
• Survey year: Four years
• Annual survey frequency: three times
• Number of sites: 267
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Sampling Design

Objective: The core of studying dynamic occupancy models is to analyze the dynamic occupancy of 
species on spatial units such as sites or regions.
Ø Time: t=1,2,…,T (Primary periods)
Ø Sites: i=1,2,…,R (Spatial unit station)
Ø Surveys: j=1,2,…,J (Repeated survey frequency)
Ø Observed occupancy status of site i for survey j within primary period t: yj(i, t)
Ø True occupancy status of site i during primary period t: z(i, t)
Ø Probability of site occupancy for period t: ψt = Pr(z(i, t) = 1)
Ø Probability that an occupied site remains occupied: φt =  Pr(z(i, t+1) = 1| z(i, t) = 1) --> Survival
Ø Probability of the local colonization: γt = Pr(z(i, t+1) = 1 | z(i, t) = 0) --> Colonization

t i j yj(i, t) ψt φt γt



State-space representation
Dynamic occupancy model that divides the dynamic process of species into two parts

• State Model: Describes the actual occupancy status of a site.
• Observation Model: Describing observation results based on occupancy status.

State Model
Initial occupancy states：Assuming in the first time period 
(t = 1), The occupancy status of each site z(i, t) is 
independent and follows a Bernoulli distribution.

During consecutive periods (t>1), the occupancy state of a site z(i,t) is determined by the state in 
the previous period z(i,t−1) and is influenced by the local survival probability (ϕt−1​) and local 
colonization probability (γt−1​):



State-space representation
Dynamic occupancy model that divides the dynamic process of species into two parts

• State Model: Describes the actual occupancy status of a site.
• Observation Model: Describing observation results based on occupancy status.

Observation Model

The observation model describes how the 
observer collects data yj​(i,t) based on the true 
occupancy state z(i,t):

Ø If site i is occupied at time t (z(i,t)=1), the observation outcome yj​(i,t) is a Bernoulli trial with 
success probability pt​.

Ø If site i is not occupied at time t (z(i,t)=0), yj​(i,t)=0.
Ø  Detection probability of the investigator successfully detecting the presence of a species if a 

site is occupied during the t time period) : pt​



Metapopulation summaries

Occupancy probability at t can be computed recursively:

Turnover
Probability that an occupied quadrat picked at random is a newly occupied one:

Growth rate:



Finite sample estimation
Finite-sample estimates are easily calculated under a Bayesian framework using Markov Chain Monte 
Carlo(MCMC), which directly samples the latent occupancy states (z(i,t)) and computes desired quantities.

Defines finite-sample occupancy as the 
proportion of occupied sites in the sample:

Estimator of sample growth rate:

Estimator sample turnover rate:
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Gibbs Sampling
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Observation Model
When a site is survived, the observed 
occupancy state y is determined by 
probability of Detection p.
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Gibbs Sampling
 • Prior Distribution

ψ1 ,  pt , ϕt ,  γt     ~    U 0,1 

Ø For hyperparameter �� ψ1 �� ��, we assume they follow Uniform distribution.

Ø For latent parameters z(i,t), we assume that they are drawn from a Bernoulli distribution with 
probability of � �, � − 1 ��−1 +  1 − � �, � − 1  ��−1.

� � 1,1 , � 2,1 , …� �, 1 , …� 1, � , � 2, � , …� �, � |�1, �1, �1, …, ��−1, ��−1

∝  
�=1

�

 
�=2

�

��������� � �, � − 1 ��−1 +  1 − � �, � − 1  ��−1 × ��������� �1 



Gibbs Sampling
 • Likelihood Distribution

We consider data obtained from repeated presence/absence surveys of i = 1, 2, ... , R spatial units 

and each site is surveyed j = 1, 2, ... , J times within each of t = 1, 2, ... , T primary periods and that 

each site is closed with respect to its occupancy status within but not across primary periods.

For site i at time t,

p y1 i, t , y2 i, t , …, yJ i, t |z i, t = 1, pt ∝  
j=1

J

Bernoulli z i, t pt 

y1 i, t , y2 i, t , …, yJ i, t |z i, t = 1, pt  ~ Binomial  J, z i, t pt 



Gibbs Sampling
 • Joint Posterior Distribution

∝  
�=1

�
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�

 
�=1
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� �� �, �  � �, � = 1, �� 
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Combine the state model and observed model, the joint posterior distribution of all parameters 

and hyper parameter, that is,



Gibbs Sampling
 • Conditional Posterior Distribution

Ø The conditional distribution of �1 given other parameters is

ψ1 | ·   ~    Beta  
i

z i, 1 + 1,  R − 
i

z i, 1 + 1 

Ø The conditional distribution of �� given other parameters is

pt | ·   ~    Beta  
i

 
j

yj i, t × z i, t + 1,  R × J − 
i

 
j

yj i, t × z i, t + 1 

Because the prior distributions of hyperparameters are uniform, which is a beta(1,1), the conjugate prior 

for the binomial likelihood, the conditional posterior distribution for each parameter is beta distribution. 



Gibbs Sampling
 • Conditional Posterior Distribution

Ø The conditional distribution of �� given other parameters is.

ϕt | ·   ~    Beta n4 + 1, n3 + 1 

where �3 is the number of extinction events during the interval t to t+1, �4 is the number of survives 

events during the interval t to t+1. 

Ø The conditional distribution of �� given other parameters is

γt | ·   ~    Beta n2 + 1, n1 + 1 

where �1 is frequency of z(i,t)=0 and z(i,t+1)=0, �2 is the number of colonization events during the 

interval t to t+1. 

Z( i , t ) Z( i , t+1 ) frequency

0 0 ��

0 1 ��

1 0 ��

1 1 ��



Gibbs Sampling
 • Conditional Posterior Distribution
Ø The conditional distribution of latent parameter � �, �  given other parameters is a little complex, 

we will discuss by two steps.

First, we ignore the influence of data.

z i, t |z i, t − 1 , z i, t + 1  ~ Bernoullli ������ 

For t=2,3,4,…,T-1, we can simplify the model as

z i, 1 |z i,  2  ~ Bernoullli ������ 

For t=1, T , we can simplify the model as

z i, T |z i,  T − 1  ~ Bernoullli ������ 



Gibbs Sampling
 • Conditional Posterior Distribution
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Gibbs Sampling
 • Conditional Posterior Distribution
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Gibbs Sampling
 • Conditional Posterior Distribution

The complete posterior distribution after combining the observational data

� � �, � = 1|� �, � , � �, � − 1 , � �, � + 1  ∝ � � �, � |� �, �  × � � �, � |� �, � − 1 , � �, � + 1  

= � ��� �,�  1−� �− ��� �,� ������

� ��� �,�  1−� �− ��� �,� ������+ 1− ������ ·I   ��� �,� =0  

where � �, � ~�������� �, �  and � = � �, � ��.

= � �,� 

z i, t |·~ Bernoullli p i,t  



Gibbs Sampling
 • Sampling Steps

1. Initial  parameters �1, �1, �1, �1, � 1,1 , …, � �, 1 
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 �  from Beta  i z i, 1 
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 k−1 + 1 
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Crossbill Data Set (2001 – 2004)
267 plots × 4 years × 3 surveys/year (12 detection columns) 

• Detection variables: det011 … 
det043 (0/1/NA)

• Select 12 detection columns, 
build 3-D array y[site, rep, 
year]  

• Keep NA as missing detections



R Pre-processing Code
Prepare initials, params:

If a sample point is detected at 
least once in a given year, the 
potential occupancy state z for 
that year is first set to 1. 
Otherwise, it is first set to 0;
Otherwise, z is set to 0. 



JAGS Model
• Priors

• State process: initial occupancy + 
survival/colonization



JAGS Model
• Derived quantities: population ψ, growth rate, turnover

JAGS Model
• Observation process: y ~ Bernoulli(z × p)



Running & Diagnostics



Running & Diagnostics



Results Comparison
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Adding Covariates

weakly informative prior

precipitation & temperature & forest-area 



Model Comparison

Intercept Coefficient Deviance DIC

add precipitation to γt -1.623 -0.511 1500.105 2190.337

add precipitation to φt 1.429 -0.582 1520.727 2228.706

add precipitation to pt 0.203 0.120 1513.370 2228.804

add temperature to γt -1.724 -0.676 1523.391 2211.273

add temperature to φt 1.566 -0.646 1533.745 2289.692

add temperature to pt 0.228 -0.061 1509.025 2177.631

add forest-area to γt -1.751 -0.753 1521.095 2202.394

add forest-area to φt 1.533 -0.621 1530.826 2231.781

add forest-area to pt 0.212 0.042 1511.412 2218.879



add temperature to ��



add precipitation to �� & add temperature to ��
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