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I. Background
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Research Objective: Develop a hierarchical
dynamic occupancy model, using a state-
space framework to estimate site occupancy,
extinction, colonization, and turnover rates.

Species distribution and detection errors °

Species distribution and fragment occupancy are important
concepts in biogeography and conservation biology, but
species surveys often have detection errors, leading to
distribution estimation biases. Therefore, it is necessary to
clearly consider the detection probability to obtain
accurate occupancy estimates.

Advantages of Site Occupancy Models ©

Site occupancy models are widely used due to their
simplicity in using detection/non-detection data, explicit
handling of detectability, and extensibility. They can also
estimate or model population abundance.

Advantages of Site Occupancy Models °

To study dynamic features like local extinction and
colonization, occupancy models are extended to dynamic
models, allowing site occupancy to change over time.
These models better capture population processes and
enhance ecological insights.




I. Introduction of Dataset

The Crossbill Dataset is an ecological dataset. It consists of detailed data
collected from multiple forest regions through surveys and is commonly used to
analyze crossbill behavior.

267 1-kmsq quadrats were surveyed 3 times per year during 1999-2007.

Basic Information

* id: A unique identifier for each recorded site.

e surveys: Number of surveys conducted, representing repeated observations at the sampling point.

* det991, det992, ..., det073 : Detection indicators, showing whether crossbill birds were detected at different
time points or under different conditions (1 for detected, O for not detected, NA for missing data).

Important information extraction

* Survey year: Four years

* Annual survey frequency: three times
* Number of sites: 267
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I Sampling Design

Objective: The core of studying dynamic occupancy models is to analyze the dynamic occupancy of
species on spatial units such as sites or regions.

» Time: t=1,2,...,T (Primary periods)

» Sites: i=1,2,...,R (Spatial unit station)

» Surveys: j=1,2,...,] (Repeated survey frequency)

» Observed occupancy status of site i for survey j within primary period t: y;(i, t)

» True occupancy status of site i during primary period t: z(i, t)

» Probability of site occupancy for period t: g, = Pr(z(i, t) = 1)

» Probability that an occupied site remains occupied: ¢, = Pr(z(i, t+1) = 1| z(i, t) = 1) --> Survival

» Probability of the local colonization: y,= Pr(z(i, t+1) =1 | z(i, t) = 0) --> Colonization

t 1} yj(il t) ¢ P, W



I State-space representation

Dynamic occupancy model that divides the dynamic process of species into two parts
e State Model: Describes the actual occupancy status of a site.
* Observation Model: Describing observation results based on occupancy status.

State Model

Initial occupancy states: Assuming in the first time period

(t = 1), The occupancy status of each site z(j, t) is Z(i, 1) s Bernoulli(\|/1 )
independent and follows a Bernoulli distribution.

During consecutive periods (t>1), the occupancy state of a site z(i,t) is determined by the state in
the previous period z(i,t—-1) and is influenced by the local survival probability (¢,_,) and local

colonization probability (y,_,):

z(i,t)|z(i,t — 1)
~ Bernoulli{z(i,t — 1)b, { + [1 —z(i,t — 1)]y,_ }



I State-space representation

Dynamic occupancy model that divides the dynamic process of species into two parts
e State Model: Describes the actual occupancy status of a site.

Observation Model: Describing observation results based on occupancy status.

Observation Model

The observation model describes how the

observer collects data y;(i,t) based on the true yj (l; t) ‘Z(i, t) ~ Bernoulli [Z(i; t)pt] :
occupancy state z(i,t):

» If siteiis occupied at time t (z(i,t)=1), the observation outcome yj(i,t) is a Bernoulli trial with
success probability p.

> If site i is not occupied at time t (z(i,t)=0), y;(i,t)=0.

» Detection probability of the investigator successfully detecting the presence of a species if a
site is occupied during the t time period) : p,



I Metapopulation summaries

Occupancy probability at t can be computed recursively:

\Ilt — \|fz—1(|)r—1 + (1 - \\Jr—l)yt—l

e
(7
Turnover Pr(z(t— 1)=0|z(¢)=1)

Probability that an occupied quadrat picked at random is a newly occupied one:

Growth rate: A,

] —
T, = Yr—l( Ur—l)
!

ﬁfr—l(l _ q’r—l) LA ¢’ —l\lj.f—l




I. Finite sample estimation

Finite-sample estimates are easily calculated under a Bayesian framework using Markov Chain Monte
Carlo(MCMC), which directly samples the latent occupancy states (z(i,t)) and computes desired quantities.

Defines finite-sample occupancy as the \|l(fs) _ 1 Z Z(i l‘)
! T )

proportion of occupied sites in the sample:

Estimator of sample growth rate: ZR :
=1 Z(la [+ 1)

Estimator sample turnover rate: ZR 1[1 _ Z(i f — 1)]Z(i z)
_ = ’ ’
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I Gibbs Sampling

Site occupation state , can be change between each season t and site i. In the
first season, ,1 is determined by the probability of . In the
subsequent seasons, , is determined by the site i and the site’s occupancy state in
prior season and probabilities of and
For each site,

t=1 t=2 t=

=1

:1 :1
Occupancy in season 1 Occupancy in season t:
- EEN AR EIRNEY

When a site is survived, the observed

occupancy state y is determined by
probability of

=1

\

N

y=0

y=1

Observation of survey j during time t:

L



I Gibbs Sampling
* Prior Distribution

» For hyperparameter , we assume they follow Uniform distribution.

LlJllpt’(I)t!yt B UO,1

» For latent parameters z(i,t), we assume that they are drawn from a Bernoulli distribution with
prObab”lty of =1 1+t 1— =1 —1-

111 ) 211 y e 11 y e 11 ) 21 y e 1 | 1 1 1y vy —1 -1



I Gibbs Sampling
 Likelihood Distribution

We consider data obtained from repeated presence/absence surveys of i = 1, 2, ..., R spatial units
and each site is surveyed j=1, 2, ..., J times withineach oft=1, 2, ..., T primary periods and that

each site is closed with respect to its occupancy status within but not across primary periods.

For site i at time t,

Py, LU, y> Lt,...,y; Lt |zt =1, p; Bernoulli z I, t p;
=1

yi LU, y> Lt,..,y; Lt |zt =1, py —Binomial J,z I,t p;



I Gibbs Sampling
 Joint Posterior Distribution

Combine the state model and observed model, the joint posterior distribution of all parameters

and hyper parameter, that is,

1 1> 1y 1y 23 0y —1: —1: 1 111 1 211 YRR, 11 y ey 11 J 21 y v J

= = =1

X 111 ) 211 y e 11 y e 11 1 2’ y e ’ 1 1y Qs ree -1 —1

X 1) 1y 1 1y 210 —11 -1



I Gibbs Sampling

« Conditional Posterior Distribution

Because the prior distributions of hyperparameters are uniform, which is a beta(1,1), the conjugate prior

for the binomial likelihood, the conditional posterior distribution for each parameter is beta distribution.

» The conditional distribution of ; given other parameters is

P, |- — Beta zil +1,R— zil +1

» The conditional distribution of  given other parameters is

p.|- — Beta yj bt xz it +1, Rx]— yj it xzit +1



I Gibbs Sampling

0 0

» Conditional Posterior Distribution 0 1
» The conditional distribution of  given other parameters is. 1 0

¢¢| — Betang+1,n;+1 ! !

where 3 is the number of extinction events during the interval t to t+1, 4 is the number of survives

events during the interval t to t+1.

» The conditional distribution of  given other parameters is

Vi|- — Betan,+1,n;+1

where 4 is frequency of z(i,t)=0 and z(i,t+1)=0, - is the number of colonization events during the

interval t to t+1.



I Gibbs Sampling

« Conditional Posterior Distribution

» The conditional distribution of latent parameter , given other parameters is a little complex,

we will discuss by two steps.
First, we ignore the influence of data.
For t=2,3,4,...,T-1, we can simplify the model as

zLt|zt—1 ,z1,t+1 —~Bernoullli

For t=1, T, we can simplify the model as
z1,1]z1, 2 ~Bernoullli

Zz1,T|z1, T—1 ~Bernoullli



Gibbs Sampling
Conditional Posterior Distribution

t=2,3,4,..,T-1

, —1 +1 = =1
-1
1 1
-1 + 1_ -1
—1
0 1
—1 + 1_ —1
11—
1
1 0
1= +1—- _; 1-
1 1-
1
0 0
1= +1—- _; 1-




Gibbs Sampling

Conditional Posterior Distribution

t=1 2 = 1+ =1
1 1
1
1+ 1=
1_
0 1 1
1 — 1+ 11— 1 —
t=T
— 1 — =1
1 —1




Gibbs Sampling

Conditional Posterior Distribution

The complete posterior distribution after combining the observational data

where S~ and =

z 1,t |-—Bernoullli p ¢



I Gibbs Sampling

« Sampling Steps

1. Initial parameters ¢, 1, 1, 1, 1,1 ,.., 1
2. Draw , fromBeta ,zil1 ' +1 R-— .zil*! +1
p, fromBeta ; .y;it xzit T+ Rx)— Yt xzit |
k ~1 -1
¢, fromBetan, =~ +1,n; = +1
v," fromBetan, ' +1n, " +1

z I,t  from Bernoullli p :(t
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Crossbill Data Set (2001 — 2004)

267 plots X 4 years X 3 surveys/year (12 detection columns)

wil id ele forest surveys det991 det992 det993 det001 det002 det003 det011 det012 det013 det021 det022 det023 det031 det032 det033

e Detection variables: det011 ... s

1 1 450 3 3 0 0 0 0 0 0 0 0 0 0 0 0
2 2 450 21 3 0 0 0 0 0 0 0 0 0 0 0 0
dEtO43 (O/l/NA) 3 3 1050 32 3 0 0 0 1 1 0 0 0 0 1 1 1
4 4 950 9 3 0 1 0 0 0 0 0 0 0 0 0 1 0
° S I t 12 d t t' I 5 5 1150 35 3 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0
elec etection co umns’ 6 6 550 2 3 0 0 0 0 0 0 0 0 0 0 0 0
. . T F 75 6 3 0 0 0 0 0 1 0 1 0
build 3-D array y|[site, rep, T R S S S T T T R S T
9 9 550 5 3 0 0 0 0 0 0 0 0 0 0 0 0
yea r] 10 10 550 13 3 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
11 11 1150 50 3 0 0 0 1 0 0 1 0 1 0 0 0 1 1 1
. . . 12 12 750 57 3 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0
 Keep NA as missing detections BB owe s s o s o o o o o o o o o o o o
14 14 750 15 3 0 0 1 0 0 0 0 0 0 0 0 0
15 15 450 17 3 0 0 0 0 0 0 0 0 0 0 0 1
_ i _ 16 16 1050 58 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y <- array(NA_integer_, dim = c(nsite, nrep, nyear), =17 750 - ] 0 0 o 0 0 0 0 1 0 o o 0 1 1 1
dimnames = list(site = 1:nsite, rep = l:nrep, year = yrs)) . b . - N - . . . n - - - » - . . -
19 19 1250 66 3 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1
for (k in seq_len(nrow(det_info))) A{ 20 20 350 45 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t <- which(yrs == det_info$yr[k]) 21 21 750 44 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
j <- det_info$rep[k] 22 22 750 9 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y[, j, t] <- cross[[det_info$col [k]]] 23 23 550 31 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
} 24 24 350 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
25 25 1350 78 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
26 26 550 37 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
27 27 1150 18 3 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1
28 28 1450 54 3 0 1 1 1 1 0 0 0 0 1 1 0 1 1 0
29 29 950 6 3 0 1 0 0 0 0 0 0 1 0 0 0 0 1 1



I. R Pre-processing Code

Prepare initials, params. init_z <- apply(y, c(1,3), function(v) as.integer(any(v == 1, na.rm = TRUE)))

inits <- function() list(
l~|J1 » Pt !(I)t » Yt T U(O»]-) psi = runif(i, 0, 1),

gamma = runif(nyear - 1, 0, 1),

If a sample point is detected at phi = runif(anyear - 1, 0, 1),
least once in a given year, the p = runif(nyear, 0, 1),
z = init_z

potential occupancy state z for
that year is first set to 1.
Otherwise, it is first set to O; params <- c("psi", "gamma", "phi", "p",

Otherwise, z is set to 0. phivec’, “palten, |
"growthr", "turnover", # population—level
“tan fa") # sample-level turnover



I JAGS MOdel Site occupation state z(i, t) can be change between each season t and site i. In the

first season, z(i, 1) is determined by the probability of . In the
e Priors ~ U(01 subsequent seasons, z(i, t) is determined by the site i and the site’s occupancy state
W1, Pt (I)t Yt ( ' ) in prior season and probabilities of and

psi ~ dunif(e,1)
for (t in 1:(nyear-1)) {
gamma[t] ~ dunif(0,1)

For each site,

t=1 t=2 t=
phi[t] ~ dunif(0,1) -
p[t] ~ dunif(e,1) o \ Z=1 Z=1
}
p[nyear] ~ dunif(0,1) |
e State process: initial occupancy +
survival/colonization
for (i in 1:nsite) { Occupancyin season 1 Occupancyin;e(a;o;)t;Bernou”i
z[1,1] ~ dbern(psi) z(i, 1)~Bernoulli(:).) (z(i, t — 1) T (1— 23t —1)
for (t in 2:nyear) { ’ Lt ’

muZ[i,t] <- z[i,t-1] * phi[t-1] + (1 - z[i,t-1]) * gamma[t-1]
z[i,t] ~ dbern(muZ[i,t])
}
}



* Derived quantities: population ¢, growth rate, turnover

JAGS MOdEI psivec[1] <- psi

count[1] <- sum(z[,1])
psi _fs[1] <- count[1] / nsite

* Observation process: y ~ Bernoulli(z X p)

for (t in 2:nyear) {
for (i in 1l:nsite) {

# ---- population quantities ----
'FDP (t in 1. nyealﬂ) { psivec[t] <- psivec[t-1] * phi[t-1] + (1 - psivec[t-1]) * gamma[t-1]
) growthr[t] <- psivec[t] / psivec[t-1]
'F{:}r‘ (j ir} 1:nr‘ep) { turnover[t-1] <- (1 - psivec[t-1]) * gamma[t-1] / psivec[t]
py'[ijj_,t] . Z[l_’t] * D[t] # ---- sample quantities ----
. . . . count[t] <- sum(z[,t]) # occupied sites
y[ll J Jt] ~ dber‘n(PY[lJJJt] ) for (i in 1l:nsite) { # indicator of NEW occupancy
} newocc[i,t] <- (1 - z[i,t-1]) * z[i,t]
by
} newcount[t-1] <- sum(newocc[,t]) # newly occupied sites
} tau_fs[t-1] <- newcount[t-1] / count[t] # sample turnover rate
i . ¥
When a site is survived, the observed 1
occupancy state y is determined by th "[ '
probability of : STOWLILIALE 23
=i Kf - t+1

|7

iy — Yeo1(1 — V1)
\\ ! r Vo1 (L =V y) + &V,

| : 45 ::\Pr—1¢%—& jl”(1 _"‘pr—l)YL—l

Observation of survey j during time t:

yj(i,t)~Bernoulli(z(i, t)p.)



mcmcplot (fit$samples, parms = c("psi", "gammal[1]",
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. Running & Diagnostics
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fit <- jags(data = bugs_data,
inits = inits,
parameters.to.save = params,
model.file = "crossbill_jags.txt",
n.chains = 3,
n.iter = 20000,
n.burnin = 2000,
n.thin = 10,
parallel = TRUE)
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. Results Comparison

## mean sd 2.5 507, 97.5%
Parameter Mean  SD  dooss  dosw  dosrs ## psi 0.239 0.028 0.188  0.238  0.298
i gfsd o0 0AR 0% 04660 ## gamma[1] 0.258 0.037  0.190  0.256  0.333
P2 0'422 SO:Z 0'422 3'423 022;‘ ## gamma [2] 0.188 0.040  0.114  0.187  0.269
” o S ## gamma [3] 0.070 0.028  0.021  0.068  0.131
y T ## phil1] 0.813 0.067  0.673  0.816  0.931
b3 0.682  0.053 0576 0682  0.791 ## phi[3] 0.685 0.053 0.581 0.685 0.790
Y 0.259  0.037 0.189 0257  0.334 ## pl1] 0.586 0.045 0.497 0.586 0.671
12 0.190 0041 0114 0189 0273 ## pl2] 0.493 0.037  0.421  0.492  0.567
Y3 0.071 0.029 0.022 0.068 0.133 ## p [3] 0.565 0.032 0.503 0.565 0.627
Uy 0.242 0.029 0.190 0.241 0.300 ## P [4] 0.573 0.038 0.498 0.574 0.646
v k39l - Ofn  Es 020 L ## psivec[1] 0.239 0.028  0.188  0.238  0.298
E e o ## psivec[2] 0.391 0.036  0.323  0.390  0.463
e 0240 0012 022 0231 0971 ## psivec[3] 0.449 0.034  0.383  0.449  0.517
(® e T T ## psivec[4] 0.347 0.032  0.285  0.346  0.411
() 0.449 00149 0425 0447 0481 ## psi_fs 0.237 Q.012 0. 207 0.236 0.266
&) 0.345  0.0148 0320 0342 0.380 ## growthr[2] 1.648 0.196 1.3085 1.635 2077
A 1.635  0.201 1284  1.619  2.085 ## growthr[3] 1.156 0.096 0.986 1.150 1.361
A LIS7T 0099 0978 1153 1371 ## growthr [4] 0.773 0.066  0.648  0.770  0.908
A @0 Gles 0Ll DJeE  UONS ## turnover [1] 0.502 0.057 0.387 0.505 0.609
R 0499 0.058 —0.38¢ —0.500 0610 ## turnover [2] 0.256 0.056  0.147  0.255  0.367
i 02397 0056 01510258 0,371 ## turnover[3]  0.112 0.046  0.031  0.109  0.208
T3 0.113 0.046 0.032 0.110 0.213
s w08 003 040 0500 0.558 ## tau_fs[1] 0.499 0.033  0.427 0.500  0.556
9 e ## tau_fs[2] 0.252 0.041  0.165  0.254  0.328
e i S O ## tau_fs[3] 0.103 0.033  0.035  0.103  0.169

[
a
b
|

## deviance .098 37.306 1447.630 1515.759 1592.427
-



Improvements
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I Adding Covariates

precipitation & temperature & forest-area

logit(vy:) = Bo + P1 - precip;, t=1,2,3
logit(¢:) = ng + m - precip;,, t=1,2,3
logit(p:) = ap + ay - precip;,, t=1,2,3,4
weakly informative prior

Bo ~ N(0,100), B ~ N(0,100)

no ~ N (0,100), m ~ N(0,100)

ag ~ N(0,100), a3 ~ N(0,100)



I. Model Comparison

add precipitation to yt
add precipitation to ot
add precipitation to pt
add temperature to yt
add temperature to ot
add temperature to pt
add forest-area to vyt

add forest-area to ot

add forest-area to pt

Intercept

-1.623

1.429

0.203

-1.724

1.566

0.228

-1.751

1.533

0.212

Coefficient

-0.511

-0.582

0.120

-0.676

-0.646

-0.061

-0.753

-0.621

0.042

Deviance

1500.105

1520.727

1513.370

1523.391

1533.745

1509.025

1521.095

1530.826

1511.412

DIC

2190.337

2228.706

2228.804

2211.273

2289.692

2177.631

2202.394

2231.781

2218.879




add temperature to

DIC is an estimate of expected predictive error (lower

DIC info: (pD = var(deviance)/2)
pD = 668.6 and DIC = 2177.631

mean sd 2.5% 50%

<dbl> <dbl> <dbl> <dbl>

alpha0 0.228 0.079 0.071 0.228
alphal -0.061 0.086 -0.229 -0.063
phil1] 0.777 0.068 0.637 0.779
phi[2] 0.865 0.045 0.770 0.868
phi[3] 0.681 0.052 0.577 0.681
gamma[l] 0.243 0.034 0.181 0.242
gamma[2] 0.210 0.038 0.141 0.209
gamma[3] 0.066 0.029 0.017 0.063
p[1] 0.567 0.026 0.516 0.567
pl2] 0.548 0.021 0.507 0.548
mtgtan =|Sd 215% Sorn

p(3] 0.540 0.028 0.484 0.540
pl4] 0.571 0.030 0.511 0.571
psivec[1] 0.241 0.028 0.189 0.240
psivec[2] 0.372 0.033 0.309 0.371
psivec[3] 0.454 0.034 0.389 0.454
psivec[4] 0.345 0.032 0.283 0.345
psi_fs[1] 0.240 0.011 0.221 0.240
psi_fs[2] 0.371 0.015 0.345 0.371
psi_fs[3] 0.454 0.015 0.427 0.453
psi_fs[4] 0.344 0.014 0.318 0.341

97.5%

0.381
0.106
0.901
0.944
0.780
0.313
0.287
0.127
0.618
0.588

growthr[2]
growthr(3]
growthr[4]
turnover[1]
turnover(2]
turnover(3]

tau_fs[1]
tau_fs[2]
97.5% tau_fs[3]
<dbl> deviance
0.595
0.628
0.298
0.439
.523
0.411
0.262
0.401
0.487
0.375

mean
<dbl>

1:556
1.226
0.762
0.496
0.291
0.104

0.492
0.287
0.095
1509.025

1s better).

sd
| t". =

0.183
0.097
0.064
0.057
0.052
0.045

0.031
0.033
0.034
36.5/9

2.5%

<dbl>
1.233
1.059
0.640
0.384
0.192
0.026

0.427
0.221
0.023
1439.628

50%
<dbl>

1.543
1.221]
0.761
0.495
0.291
0.102

0.495
0.288
0.096
1508.4/76

Parameter Mean SD q0.025 q0.500 q0.975

P 0.584  0.044 0493  0.584  0.666

P> 0493  0.037 0422 0493  0.564

P 0.566  0.033 0.504  0.566  0.629

Pa 0.574  0.037 0499  0.574  0.643

b, 0.806  0.069 0.656  0.812  0.931
97.5% > 0.855  0.046 0.758  0.858  0.938
=B by 0.682  0.053 0.576  0.682  0.791
}:i:i Y 0259  0.037 0.189 0257  0.334
G Rga 2 0.190  0.041 0.114  0.189  0.273
0.608 V3 0.071  0.029 0.022  0.068  0.133
0.394 0242 0.029 0.190 0241  0.300
0.201 V), 0.391  0.035 0323 0390  0.461
0.549 U3 0.450  0.034 0.386 0450  0.517
0.348 i, 0346  0.032 0286  0.345  0.409
0.160 i 0240  0.0124 0222 0237 0271
1582.913 (™ 0389  0.0210 0353  0.387  0.436
&) 0449  0.0149 0425 0447 0481

P 0345 00148 0320 0342 0.380

M 1.635  0.201 1284  1.619  2.085

D 1157 0.099 0978 1153 1.371

K 0.770  0.065 0.651  0.768  0.908

T 0499  0.058 0384  0.500  0.610

T 0259  0.056 0.151 0258  0.371

T 0.113  0.046 0.032  0.110 0213

T\ 0498  0.032 0429  0.500  0.555

o) 0.254  0.041 0.170  0.256  0.328

o™ 0.104  0.034 0.034  0.103  0.170




DIC info:
685.9 and DIC

pD

add precipitation to

(pD

var (deviance) /2)

& add temperature to

DIC is an estimate of expected predictive error (lower 1is better).

betal
betal
alpha0
alphal
phi[1]
phi[2]
phi[3]
gammall]
gammal2]
gamma[3]

pll]
pl2]
pl3]
pl4]
psivec[]
psivec[2
psivec([3
psivec[4
psi_fs[1]
psi_fs[2]

]
]
]
]

mean

<dbl>
-1.626
-0.552
0.236
-0.024
0.768
0.854
0.679
0.174
0.250
0.102

mean
<dbl>

0.563
0.555
0.552
0.564
0.247
0.321
0.443
0.358
0.246
0.358

sd

0.145
0.201
0.078
0.085
0.067
0.046
0.054
0.020
0.034
0.027

sd
<dbl>

0.027
0.020
0.027
0.031
0.029
0.027
0.033
0.032
0.013
0.012

2184.249
2.5% 50%
1514 -1.622
-0.959 -0.544
0.087 0.237
-0.186 -0.024
0.629 0.770
0.755 0.857
0.574 0.679
0.137 0,173
0.187 0.249
0.056 0.101
2.5% 50%
<dbl> <dbl>
0.510 0.563
0.516 U555
0.500 0.552
0.504 0.564
0.193 0.247
0.269 0.321
0.3/8 0.444
0.297 0.357
0225 0.243
03547 0.356

97.5%
<dbl>
-1.349
-0.174
0.390
0.145
0.891
0.936
0.786
0.214
0.320
0.163

97.5%

0.614
0.594
0.604
0.622
0.307
0.376
0.508
0.424
0.273
0.386

psi_fs[3]

psi_fs[4]

growthr[2]
growthr[3]
growthr[4]
turnover|[1]
turnover|2]
turnover|3]

tau_fs[1]
tau_fs[2]
tau_fs[3]
deviance

mean
<dbl>

0.448
0.348
1.307
1.387
0.809
0.410
0.382
0.160

0.467
u.313
0.120
1498.364

sd
<dbl>

0.014
0.015
0.124
0.103
0.067
0.055
0.041
0.043

0.035
0.027
0.030
37.036

2.5%

<dbl>
0.423
0.322
1.084
1.201
0.682
0.308
0.303
0.085

0.391
0.258
0.065
1430.433

50%
< .'j.| >

0.446
0.348
1.300
1.381
0.808
0.408
0.382
0.157

0.469
0.314
0.118
1496.774

97.5%
<dDI>
0.476
0.378
.56¢
1.601
0.944
0.520
0.466
0.254

0.527
0.365
0.181
1573.600

Parameter Mean SD q0.025 q0.500 q0.975
P 0.584  0.044 0493  0.584  0.666
P> 0493  0.037 0422 0493  0.564
P 0.566  0.033 0.504  0.566  0.629
Pa 0.574  0.037 0499  0.574  0.643
by 0.806  0.069 0.656  0.812  0.931
> 0.855  0.046 0.758  0.858  0.938
b3 0.682  0.053 0.576  0.682  0.791
Y 0259  0.037 0.189 0257  0.334
Ya 0.190  0.041 0.114  0.189 0273
Y3 0.071  0.029 0.022  0.068  0.133
Wy 0242 0.029 0.190 0241  0.300
Vs 0391  0.035 0323 0390  0.461
Vs 0450  0.034 0.386  0.450  0.517
Vs 0346  0.032 0286  0.345  0.409

(£ 0240  0.0124 0222 0237 0271

&) 0389  0.0210 0353  0.387  0.436

&) 0449  0.0149 0425 0447 0481
P 0345 00148 0320 0342 0.380
oy 1.635  0.201 1284 1619  2.085
D 1157 0.099 0978 1153 1.371
R 0.770  0.065 0.651  0.768  0.908
Ty 0499  0.058 0.384  0.500  0.610
T 0259  0.056 0.151 0258  0.371
T3 0.113  0.046 0.032  0.110 0213
T\ 0498  0.032 0429  0.500  0.555
3 0.254  0.041 0.170 0256  0.328
AR 0.104  0.034 0.034  0.103  0.170
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