

2025

Bayesian Statistics (STA306) Final Project

A BAYESIAN STATE-SPACE FORMULATION OF DYNAMIC OCCUPANCY MODELS

Example reproduction: European Crossbill

Group Member

Zihan Zhang
Xinyu Zhang

Qianyu Yang
Siqing Li

Royle, J. A., & Kéry, M. (2007). A Bayesian state-space formulation of dynamic occupancy models. *Ecology*, 88(7), 1813-1823.

CONTENTS

01

**Background and
Introduction**

02

**Sampling Design and
the Dynamic Model**

03

**Bayesian Analysis
MCMC implementation**

04

Code and Results

05

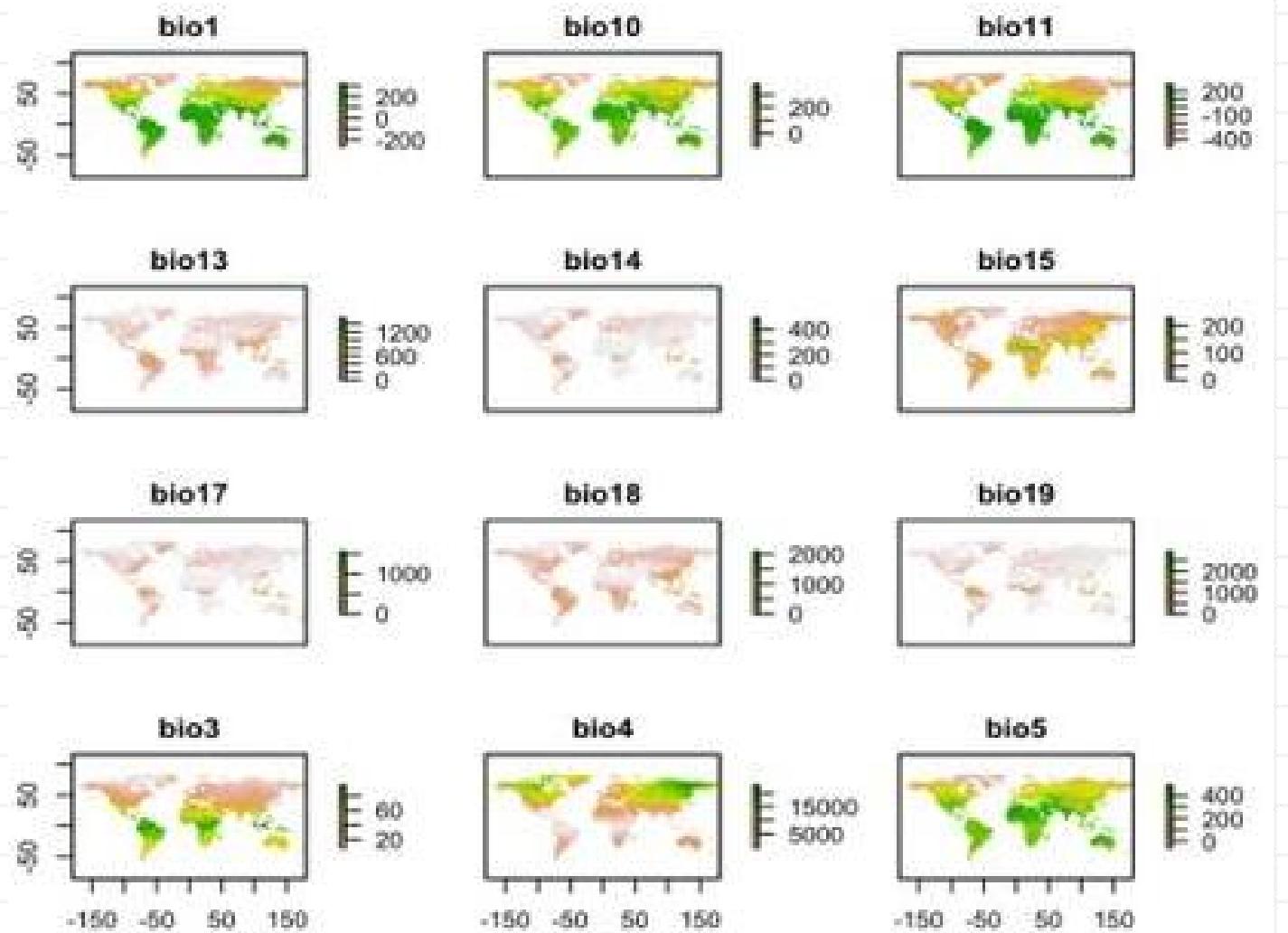
Improvements

PART ONE

Background and Introduction

••• Bayesian Statistics •••

Background



Research Objective: Develop a hierarchical dynamic occupancy model, using a state-space framework to estimate site occupancy, extinction, colonization, and turnover rates.

Species distribution and detection errors

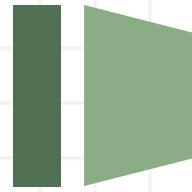
Species distribution and fragment occupancy are important concepts in biogeography and conservation biology, but species surveys often have **detection errors**, leading to distribution estimation biases. Therefore, it is necessary to clearly **consider the detection probability** to obtain accurate occupancy estimates.

Advantages of Site Occupancy Models

Site occupancy models are widely used due to their simplicity in using detection/non-detection data, explicit handling of detectability, and extensibility. They can also estimate or model population abundance.

Advantages of Site Occupancy Models

To study **dynamic features** like local extinction and colonization, occupancy models are extended to dynamic models, allowing **site occupancy to change over time**. These models better capture population processes and enhance ecological insights.



Introduction of Dataset

The **Crossbill Dataset** is an ecological dataset. It consists of detailed data collected from multiple forest regions through surveys and is commonly used to analyze crossbill behavior.

267 1-kmsq quadrats were surveyed 3 times per year during 1999-2007.

Basic Information

- id: A unique identifier for each recorded site.
- surveys: Number of surveys conducted, representing repeated observations at the sampling point.
- det991, det992, ..., det073 : Detection indicators, showing whether crossbill birds were detected at different time points or under different conditions (1 for detected, 0 for not detected, NA for missing data).

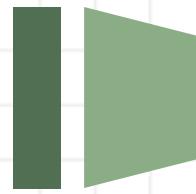
Important information extraction

- Survey year: Four years
- Annual survey frequency: three times
- Number of sites: 267

PART TWO

Sampling Design and the Dynamic Model

••• Bayesian Statistics •••

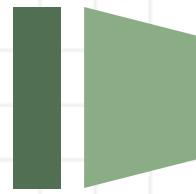


Sampling Design

Objective: The core of studying dynamic occupancy models is to analyze the **dynamic occupancy** of species on spatial units such as sites or regions.

- Time: $t=1,2,\dots,T$ (Primary periods)
- Sites: $i=1,2,\dots,R$ (Spatial unit station)
- Surveys: $j=1,2,\dots,J$ (Repeated survey frequency)
- Observed occupancy status of site i for survey j within primary period t : $y_j(i, t)$
- True occupancy status of site i during primary period t : $z(i, t)$
- Probability of site occupancy for period t : $\Psi_t = \Pr(z(i, t) = 1)$
- Probability that an occupied site remains occupied: $\phi_t = \Pr(z(i, t+1) = 1 | z(i, t) = 1)$ --> **Survival**
- Probability of the local colonization: $\gamma_t = \Pr(z(i, t+1) = 1 | z(i, t) = 0)$ --> **Colonization**

t i j $y_j(i, t)$ Ψ_t ϕ_t γ_t



State-space representation

Dynamic occupancy model that divides the dynamic process of species into two parts

- **State Model:** Describes the actual occupancy status of a site.
- **Observation Model:** Describing observation results based on occupancy status.

State Model

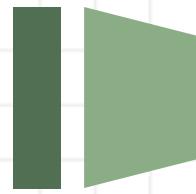
Initial occupancy states: Assuming in the first time period

($t = 1$), The occupancy status of each site $z(i, t)$ is independent and follows a Bernoulli distribution.

$$z(i, 1) \sim \text{Bernoulli}(\psi_1)$$

During consecutive periods ($t > 1$), the occupancy state of a site $z(i, t)$ is determined by the state in the previous period $z(i, t-1)$ and is influenced by the local survival probability (ϕ_{t-1}) and local colonization probability (γ_{t-1}):

$$\begin{aligned} z(i, t) | z(i, t-1) \\ \sim \text{Bernoulli}\{z(i, t-1)\phi_{t-1} + [1 - z(i, t-1)]\gamma_{t-1}\} \end{aligned}$$



State-space representation

Dynamic occupancy model that divides the dynamic process of species into two parts

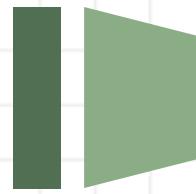
- **State Model:** Describes the actual occupancy status of a site.
- **Observation Model:** Describing observation results based on occupancy status.

Observation Model

The observation model describes how the observer collects data $y_j(i, t)$ based on the true occupancy state $z(i, t)$:

$$y_j(i, t) | z(i, t) \sim \text{Bernoulli}[z(i, t)p_t].$$

- If site i is occupied at time t ($z(i, t)=1$), the observation outcome $y_j(i, t)$ is a Bernoulli trial with success probability p_t .
- If site i is not occupied at time t ($z(i, t)=0$), $y_j(i, t)=0$.
- Detection probability of the investigator successfully detecting the presence of a species if a site is occupied during the t time period) : p_t



Metapopulation summaries

Occupancy probability at t can be computed recursively:

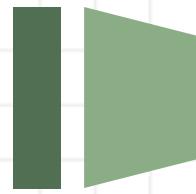
$$\psi_t = \psi_{t-1} \phi_{t-1} + (1 - \psi_{t-1}) \gamma_{t-1}$$

Growth rate: $\lambda_t = \frac{\psi_{t+1}}{\psi_t}$.

Turnover $\Pr(z(t-1) = 0 \mid z(t) = 1)$

Probability that an occupied quadrat picked at random is a newly occupied one:

$$\tau_t = \frac{\gamma_{t-1} (1 - \psi_{t-1})}{\gamma_{t-1} (1 - \psi_{t-1}) + \phi_{t-1} \psi_{t-1}}$$



Finite sample estimation

Finite-sample estimates are easily calculated under a Bayesian framework using Markov Chain Monte Carlo(MCMC), which directly samples the latent occupancy states ($z(i,t)$) and computes desired quantities.

Defines finite-sample occupancy as the proportion of occupied sites in the sample:

$$\psi_t^{(\text{fs})} = \frac{1}{R} \sum_i z(i, t)$$

Estimator of sample growth rate:

$$\lambda_t^{(\text{fs})} = \frac{\sum_{i=1}^R z(i, t+1)}{\sum_i z(i, t)}$$

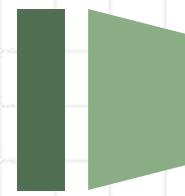
Estimator sample turnover rate:

$$\tau_t^{(\text{fs})} = \frac{\sum_{i=1}^R [1 - z(i, t-1)] z(i, t)}{\sum_{i=1}^R z(i, t)}.$$

PART THREE

Bayesian Analysis and MCMC implementation

••• Bayesian Statistics •••

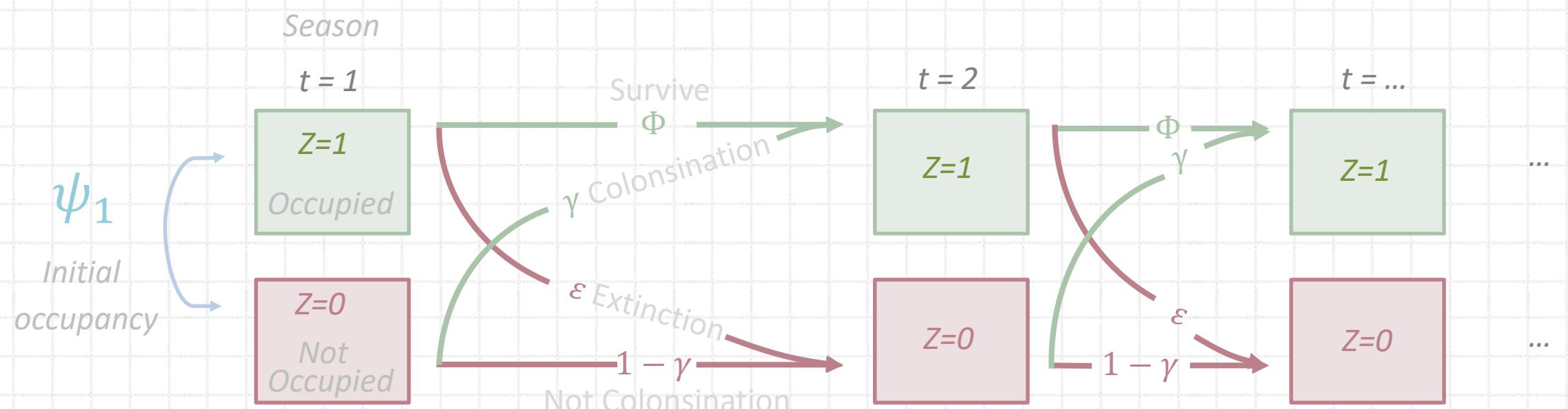


Gibbs Sampling

State Model

Site occupation state $z(i, t)$ can be change between each season t and site i . In the first season, $z(i, 1)$ is determined by the probability of **Initial Occupancy** ψ_1 . In the subsequent seasons, $z(i, t)$ is determined by the site i and the site's occupancy state in prior season and probabilities of **Colonisation** γ and **Occupied Site 'Survives'** ϕ .

For each site,



Occupancy in season 1:

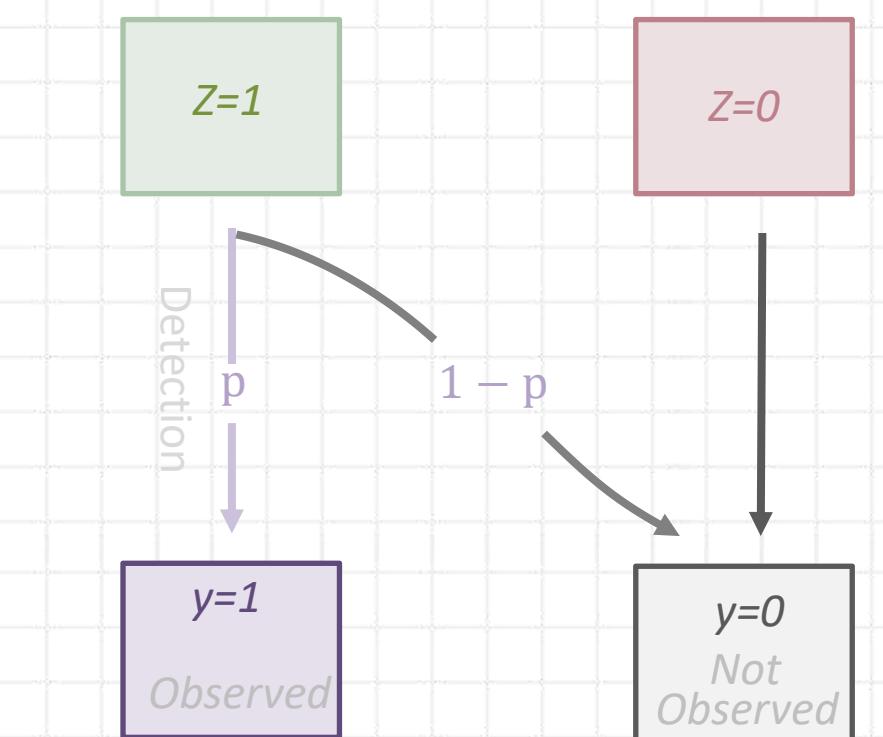
$$z(i, 1) \sim \text{Bernoulli}(\psi_1)$$

Occupancy in season t :

$$z(i, t) \sim \text{Bernoulli} \\ (z(i, t-1) \phi_{t-1} + (1 - z(i, t-1)) \gamma_{t-1})$$

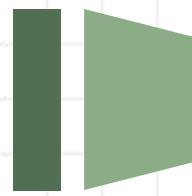
Observation Model

When a site is survived, the observed occupancy state y is determined by probability of **Detection** p .



Observation of survey j during time t :

$$y_j(i, t) \sim \text{Bernoulli}(z(i, t) p_t)$$



Gibbs Sampling

- **Prior Distribution**

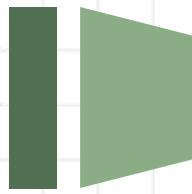
- For hyperparameter $p_t \psi_1 \phi_t \gamma_t$, we assume they follow **Uniform** distribution.

$$\psi_1, p_t, \phi_t, \gamma_t \sim U(0,1)$$

- For latent parameters $z(i,t)$, we assume that they are drawn from a **Bernoulli** distribution with probability of $z(i, t - 1)\phi_{t-1} + (1 - z(i, t - 1))\gamma_{t-1}$.

$$p(z(1,1), z(2,1), \dots, z(R, 1), \dots, z(1, T), z(2, T), \dots, z(R, T) | \psi_1, \phi_1, \gamma_1, \dots, \phi_{T-1}, \gamma_{T-1})$$

$$\propto \prod_{i=1}^R \prod_{t=2}^T \text{Bernoulli}(z(i, t - 1)\phi_{t-1} + (1 - z(i, t - 1))\gamma_{t-1}) \times \text{Bernoulli}(\psi_1)$$



Gibbs Sampling

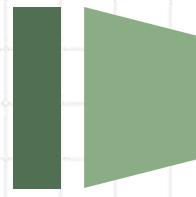
- **Likelihood Distribution**

We consider data obtained from repeated presence/absence surveys of $i = 1, 2, \dots, R$ spatial units and each site is surveyed $j = 1, 2, \dots, J$ times within each of $t = 1, 2, \dots, T$ primary periods and that each site is closed with respect to its occupancy status within but not across primary periods.

For site i at time t ,

$$p(y_1(i, t), y_2(i, t), \dots, y_J(i, t) | z(i, t) = 1, p_t) \propto \prod_{j=1}^J \text{Bernoulli}(z(i, t)p_t)$$

$$y_1(i, t), y_2(i, t), \dots, y_J(i, t) | z(i, t) = 1, p_t \sim \text{Binomial}(J, z(i, t)p_t)$$



Gibbs Sampling

- **Joint Posterior Distribution**

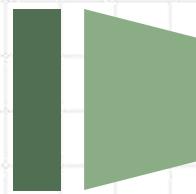
Combine the state model and observed model, the **joint posterior distribution** of all parameters and hyper parameter, that is,

$$p(\psi_1, p_1, \phi_1, \gamma_1, p_2, \dots, \phi_{T-1}, \gamma_{T-1}, p_T, z(1,1), z(2,1), \dots, z(R, 1), \dots, z(1, T), z(2, T), \dots, z(R, T) | y)$$

$$\propto \prod_{i=1}^R \prod_{j=1}^J \prod_{t=1}^T p(y_j(i, t) | z(i, t) = 1, p_t)$$

$$\times p(z(1,1), z(2,1), \dots, z(R, 1), \dots, z(1, T), z(2, T), \dots, z(R, T) | \psi_1, \phi_1, \gamma_1, \dots, \phi_{T-1}, \gamma_{T-1})$$

$$\times p(\psi_1, p_1, \phi_1, \gamma_1, p_2, \dots, \phi_{T-1}, \gamma_{T-1}, p_T)$$



Gibbs Sampling

- **Conditional Posterior Distribution**

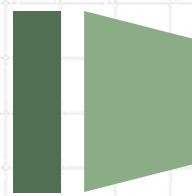
Because the prior distributions of **hyperparameters** are uniform, which is a $\text{beta}(1,1)$, the **conjugate** prior for the binomial likelihood, the conditional posterior distribution for each parameter is **beta** distribution.

➤ The conditional distribution of ψ_1 given other parameters is

$$\psi_1 | \cdot \sim \text{Beta}\left(\sum_i z(i, 1) + 1, R - \sum_i z(i, 1) + 1\right)$$

➤ The conditional distribution of p_t given other parameters is

$$p_t | \cdot \sim \text{Beta}\left(\sum_i \sum_j y_j(i, t) \times z(i, t) + 1, R \times J - \sum_i \sum_j y_j(i, t) \times z(i, t) + 1\right)$$



Gibbs Sampling

- **Conditional Posterior Distribution**

- The conditional distribution of ϕ_t given other parameters is.

$$\phi_t | \cdot \sim \text{Beta}(n_4 + 1, n_3 + 1)$$

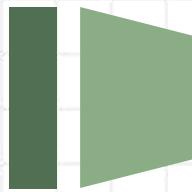
where n_3 is the number of extinction events during the interval t to $t+1$, n_4 is the number of survives events during the interval t to $t+1$.

- The conditional distribution of ϕ_t given other parameters is

$$\gamma_t | \cdot \sim \text{Beta}(n_2 + 1, n_1 + 1)$$

where n_1 is frequency of $z(i,t)=0$ and $z(i,t+1)=0$, n_2 is the number of colonization events during the interval t to $t+1$.

$z(i, t)$	$z(i, t+1)$	frequency
0	0	n_1
0	1	n_2
1	0	n_3
1	1	n_4



Gibbs Sampling

- **Conditional Posterior Distribution**

- The conditional distribution of **latent parameter** $z(i, t)$ given other parameters is a little complex, we will discuss by two steps.

First, we ignore the influence of data.

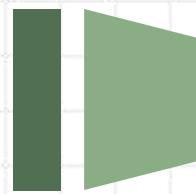
For $t=2,3,4,\dots,T-1$, we can simplify the model as

$$z(i, t) | z(i, t-1), z(i, t+1) \sim \text{Bernoulli}(\psi_{condl})$$

For $t=1, T$, we can simplify the model as

$$z(i, 1) | z(i, 2) \sim \text{Bernoulli}(\psi_{condl})$$

$$z(i, T) | z(i, T-1) \sim \text{Bernoulli}(\psi_{condl})$$



Gibbs Sampling

- **Conditional Posterior Distribution**

$t = 2, 3, 4, \dots, T-1$

$z(i, t-1)$

1

0

1

0

$z(i, t+1)$

1

0

1

0

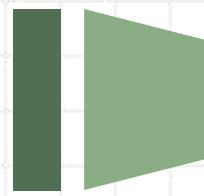
$\psi_{condl} = p(z(i, t)) = 1$

$$\frac{\phi_{t-1} \phi_t}{\phi_{t-1} \phi_t + (1 - \phi_{t-1}) \gamma_t}$$

$$\frac{\gamma_{t-1} \phi_t}{\gamma_{t-1} \phi_t + (1 - \gamma_{t-1}) \gamma_t}$$

$$\frac{\phi_{t-1} (1 - \phi_t)}{\phi_{t-1} (1 - \phi_t) + (1 - \phi_{t-1}) (1 - \gamma_t)}$$

$$\frac{\gamma_{t-1} (1 - \phi_t)}{\gamma_{t-1} (1 - \phi_t) + (1 - \phi_{t-1}) (1 - \gamma_t)}$$



Gibbs Sampling

- Conditional Posterior Distribution

t = 1

$z(i, 2)$

$\psi_{condl} = p(z(i, 1)) = 1$

1

$$\frac{\phi_1 \psi_1}{\phi_1 \psi_1 + \gamma_t (1 - \psi_1)}$$

0

$$\frac{(1 - \phi_1) \psi_1}{(1 - \phi_1) \psi_1 + (1 - \gamma_t) (1 - \psi_1)}$$

t = T

$z(i, T - 1)$

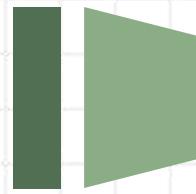
$\psi_{condl} = p(z(i, T)) = 1$

1

$$\phi_{T-1}$$

0

$$\gamma_{T-1}$$



Gibbs Sampling

- **Conditional Posterior Distribution**

The complete posterior distribution after combining the observational data

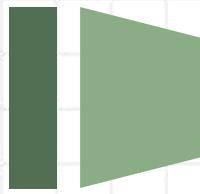
$$p(z(i, t) = 1 | y(i, t), z(i, t-1), z(i, t+1)) \propto p(y(i, t) | z(i, t)) \times p(z(i, t) | z(i, t-1), z(i, t+1))$$

$$= \frac{p^{\sum_j y_j(i, t)} (1-p)^{J - \sum_j y_j(i, t)} \psi_{condl}}{p^{\sum_j y_j(i, t)} (1-p)^{J - \sum_j y_j(i, t)} \psi_{condl} + (1 - \psi_{condl}) \cdot I(\sum_j y_j(i, t) = 0)}$$

$$= p_{(i, t)}$$

where $y(i, t) \sim \text{Binomial}(J, p)$ and $p = z(i, t)p_t$.

$z(i, t) | \cdot \sim \text{Bernoulli}(p_{(i, t)})$



Gibbs Sampling

- **Sampling Steps**

1. Initial parameters $\psi_1, p_1, \phi_1, \gamma_1, z(1,1), \dots, z(R, 1)$

2. Draw $\psi_1^{(k)}$ from Beta($\sum_i z(i, 1)^{(k-1)} + 1, R - \sum_i z(i, 1)^{(k-1)} + 1$)

$p_t^{(k)}$ from Beta($\sum_i \sum_j y_j(i, t) \times z(i, t)^{(k-1)} + 1, R \times J - \sum_i \sum_j y_j(i, t) \times z(i, t)^{(k-1)} + 1$)

$\phi_t^{(k)}$ from Beta($n_4^{(k-1)} + 1, n_3^{(k-1)} + 1$)

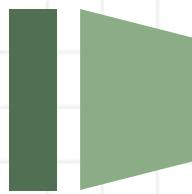
$\gamma_t^{(k)}$ from Beta($n_2^{(k-1)} + 1, n_1^{(k-1)} + 1$)

$z(i, t)^{(k)}$ from Bernoulli($p_{(i,t)}^{(k)}$)

PART FOUR

Code and Results

••• Bayesian Statistics •••



Crossbill Data Set (2001 – 2004)

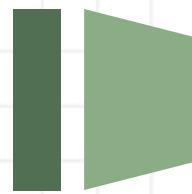
267 plots \times 4 years \times 3 surveys/year (12 detection columns)

- Detection variables: det011 ... det043 (0/1/NA)
- Select 12 detection columns, build 3-D array y[site, rep, year]
- Keep NA as missing detections

```
y <- array(NA_integer_, dim = c(nsites, nrep, nyear),
  dimnames = list(site = 1:nsites, rep = 1:nrep, year = yrs))

for (k in seq_len(nrow(det_info))) {
  t <- which(yrs == det_info$yr[k])
  j <- det_info$rep[k]
  y[, j, t] <- cross[[det_info$col[k]]]
}
```

...1	id	ele	forest	surveys	det991	det992	det993	det001	det002	det003	det011	det012	det013	det021	det022	det023	det031	det032	det033
1	1	450	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
2	2	450	21	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	3	1050	32	3	NA	NA	NA	0	0	0	1	1	0	0	0	0	1	1	
4	4	950	9	3	0	0	0	1	0	0	0	0	0	0	0	0	0	1	
5	5	1150	35	3	0	0	0	1	1	1	0	0	1	1	0	0	1	1	
6	6	550	2	3	NA	NA	NA	0	0	0	0	0	0	0	0	0	0	0	
7	7	750	6	3	0	0	0	0	0	1	NA	NA	NA	NA	NA	0	1	0	
8	8	650	60	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	
9	9	550	5	3	0	0	0	0	0	0	0	0	0	0	0	0	NA	NA	
10	10	550	13	3	0	0	0	1	0	0	0	0	0	0	0	0	1	0	
11	11	1150	50	3	0	0	0	1	0	0	1	0	1	0	0	0	1	1	
12	12	750	57	3	1	0	0	0	0	0	0	0	0	1	0	1	1	1	
13	13	1250	84	3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	
14	14	750	15	3	0	0	1	0	0	0	NA	NA	NA	0	0	0	0	0	
15	15	450	17	3	0	0	0	NA	NA	NA	0	0	0	0	0	0	0	1	
16	16	1050	58	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
17	17	750	26	3	0	0	0	0	0	0	0	0	1	0	0	0	1	1	
18	18	1250	32	3	0	0	0	0	0	0	1	1	1	0	1	0	0	1	
19	19	1250	66	3	0	0	0	1	1	0	0	0	0	0	0	0	1	0	
20	20	350	45	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	21	750	44	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	22	750	9	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
23	23	550	31	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
24	24	350	8	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
25	25	1350	78	3	0	0	0	0	0	0	1	0	0	0	0	0	0	1	
26	26	550	37	3	0	0	0	0	0	0	1	0	0	0	0	0	0	0	
27	27	1150	18	3	0	0	0	1	1	1	1	1	1	0	0	0	1	1	
28	28	1450	54	3	0	1	1	1	1	0	0	0	0	1	1	0	1	0	
29	29	950	6	3	0	1	0	0	0	0	0	0	0	1	0	0	0	1	



R Pre-processing Code

Prepare initials, params:

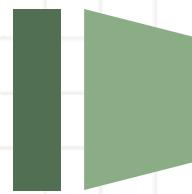
$$\psi_t, p_t, \phi_t, \gamma_t \sim U(0,1)$$

If a sample point is detected at least once in a given year, the potential occupancy state z for that year is first set to 1.

Otherwise, it is first set to 0;

Otherwise, z is set to 0.

```
init_z <- apply(y, c(1,3), function(v) as.integer(any(v == 1, na.rm = TRUE)))  
  
inits <- function() list(  
  psi  = runif(1, 0, 1),  
  gamma = runif(nyear - 1, 0, 1),  
  phi   = runif(nyear - 1, 0, 1),  
  p     = runif(nyear, 0, 1),  
  z     = init_z  
)  
  
params <- c("psi", "gamma", "phi", "p",  
          "psivec", "psi_fs",  
          "growthr", "turnover",  # population-level  
          "tau_fs")                # sample-level turnover
```



JAGS Model

- Priors $\psi_1, p_t, \phi_t, \gamma_t \sim U(0,1)$

```

psi ~ dunif(0,1)
for (t in 1:(nyear-1)) {
  gamma[t] ~ dunif(0,1)
  phi[t] ~ dunif(0,1)
  p[t] ~ dunif(0,1)
}
p[nyear] ~ dunif(0,1)

```
- State process: initial occupancy + survival/colonization

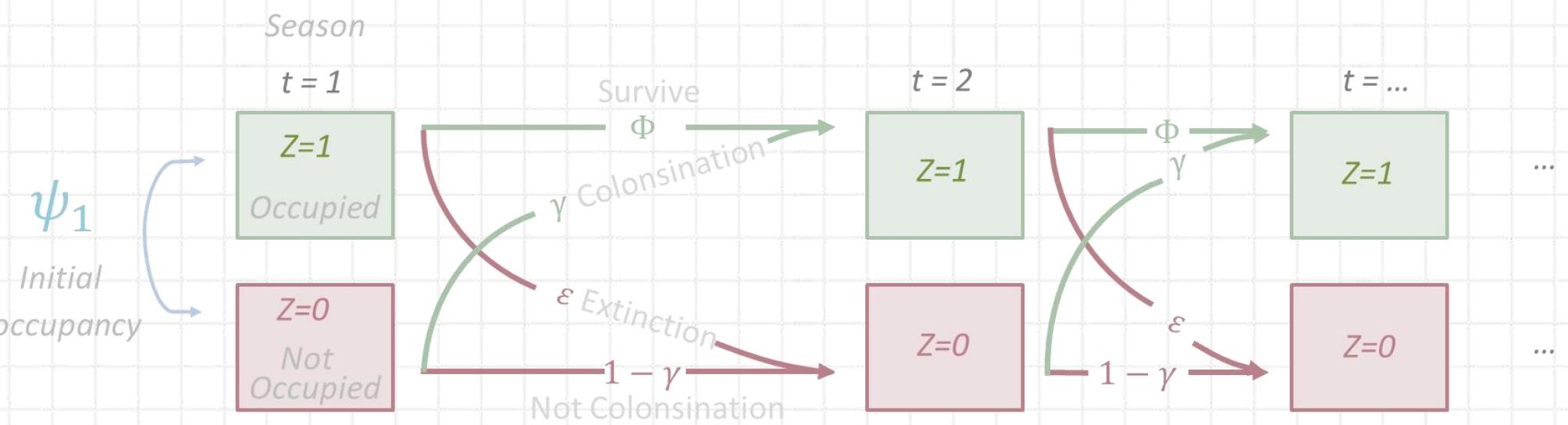
```

for (i in 1:nsite) {
  z[i,1] ~ dbern(psi)
  for (t in 2:nyear) {
    muZ[i,t] <- z[i,t-1] * phi[t-1] + (1 - z[i,t-1]) * gamma[t-1]
    z[i,t] ~ dbern(muZ[i,t])
  }
}

```

State Model

Site occupation state $z(i, t)$ can be change between each season t and site i . In the first season, $z(i, 1)$ is determined by the probability of **Initial Occupancy** ψ_1 . In the subsequent seasons, $z(i, t)$ is determined by the site i and the site's occupancy state in prior season and probabilities of **Colonisation** γ and **Occupied Site 'Survives'** ϕ . For each site,

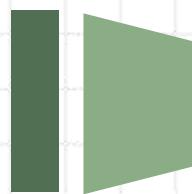


Occupancy in season 1:

$$z(i, 1) \sim \text{Bernoulli}(\psi_1)$$

Occupancy in season t :

$$z(i, t) \sim \text{Bernoulli}((z(i, t-1)\phi_{t-1} + (1 - z(i, t-1))\gamma_{t-1}))$$



JAGS Model

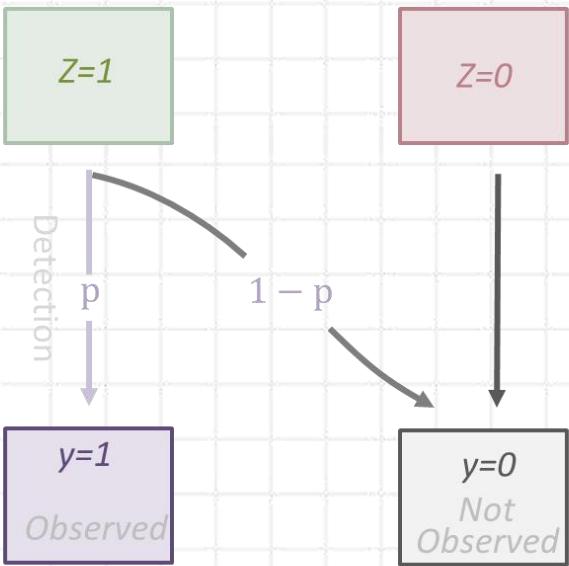
- Observation process: $y \sim \text{Bernoulli}(z \times p)$

```

for (i in 1:nsite) {
  for (t in 1:nyear) {
    for (j in 1:nrep) {
      Py[i,j,t] <- z[i,t] * p[t]
      y[i,j,t] ~ dbern(Py[i,j,t])
    }
  }
}
  
```

Observation Model

When a site is survived, the observed occupancy state y is determined by probability of Detection p .



Observation of survey j during time t :

$$y_j(i, t) \sim \text{Bernoulli}(z(i, t)p_t)$$

- Derived quantities: population ψ , growth rate, turnover

```

psi[1] <- psi
count[1] <- sum(z[,1])
psi_fs[1] <- count[1] / nsite

for (t in 2:nyear) {

  # ---- population quantities ----
  psi[t] <- psi[t-1] * phi[t-1] + (1 - psi[t-1]) * gamma[t-1]
  growthr[t] <- psi[t] / psi[t-1]
  turnover[t-1] <- (1 - psi[t-1]) * gamma[t-1] / psi[t]

  # ---- sample quantities ----
  count[t] <- sum(z[,t])
  for (i in 1:nsite) {
    newocc[i,t] <- (1 - z[i,t-1]) * z[i,t]
  }
  newcount[t-1] <- sum(newocc[,t])
  tau_fs[t-1] <- newcount[t-1] / count[t]

}
  
```

occupied sites
 # indicator of NEW occupancy

 # newly occupied sites
 # sample turnover rate

growth rate as

$$\lambda_t = \frac{\psi_{t+1}}{\psi_t}.$$

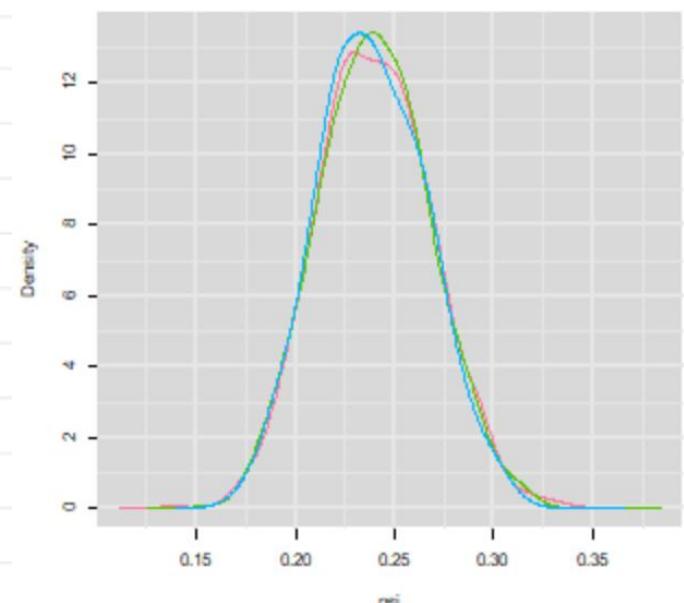
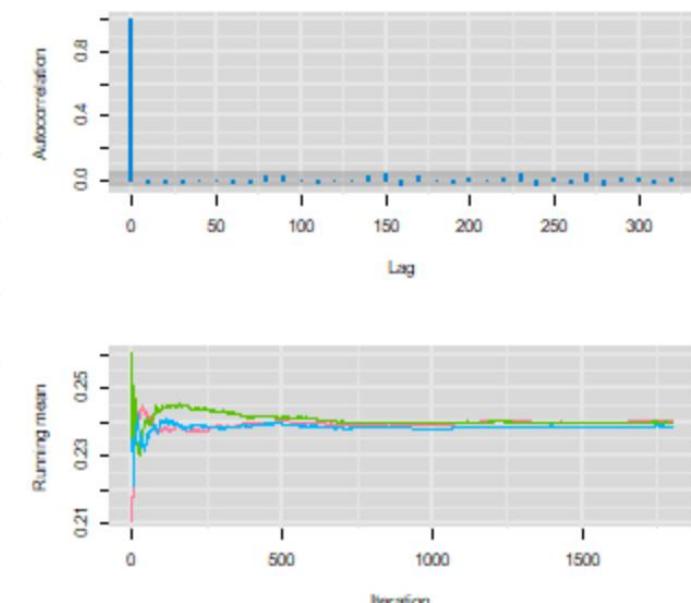
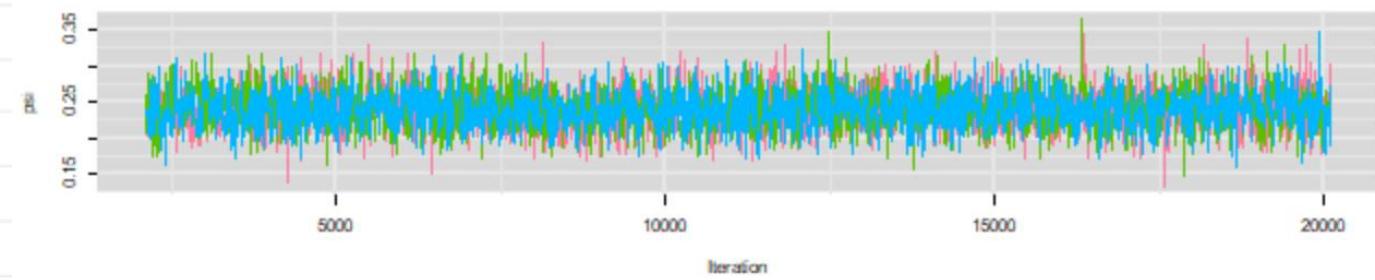
$$\tau_t = \frac{\gamma_{t-1}(1 - \psi_{t-1})}{\gamma_{t-1}(1 - \psi_{t-1}) + \phi_{t-1}\psi_{t-1}}$$

$$\psi_t = \psi_{t-1}\phi_{t-1} + (1 - \psi_{t-1})\gamma_{t-1}$$

Running & Diagnostics

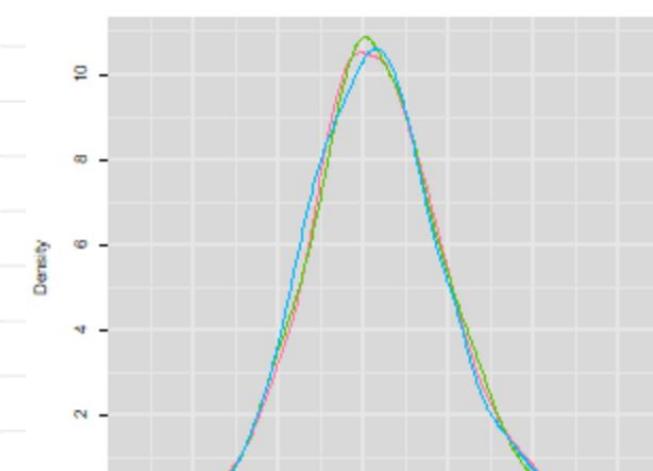
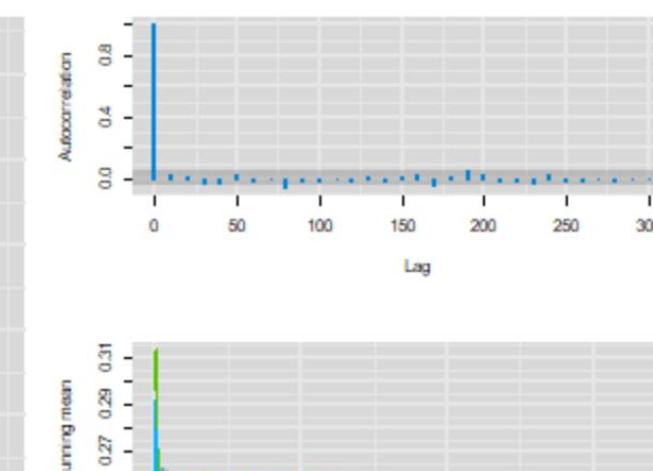
```
mcmcplot(fit$samples, parms = c("psi", "gamma[1]", "phi[1]", "p[1]"))
```

Diagnostics for psi



```
fit <- jags(data  
  inits  
  parameters.to.save = params,  
  model.file  
  n.chains  
  n.iter  
  n.burnin  
  n.thin  
  parallel  
  = bugs_data,  
  = inits,  
  = parameters,  
  = "crossbill_jags.txt",  
  = 3,  
  = 20000,  
  = 2000,  
  = 10,  
  = TRUE)
```

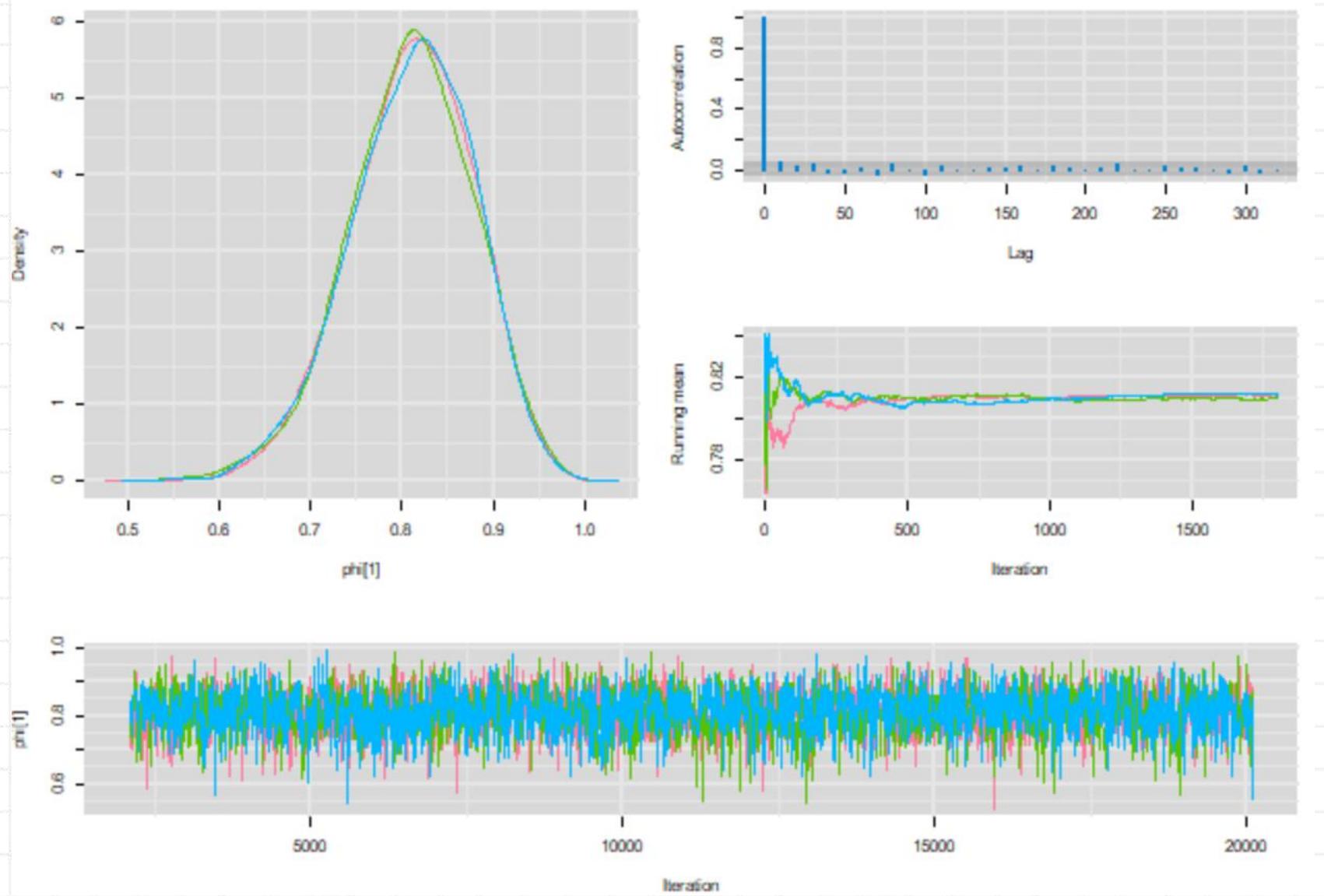
Diagnostics for gamma[1]



Running & Diagnostics

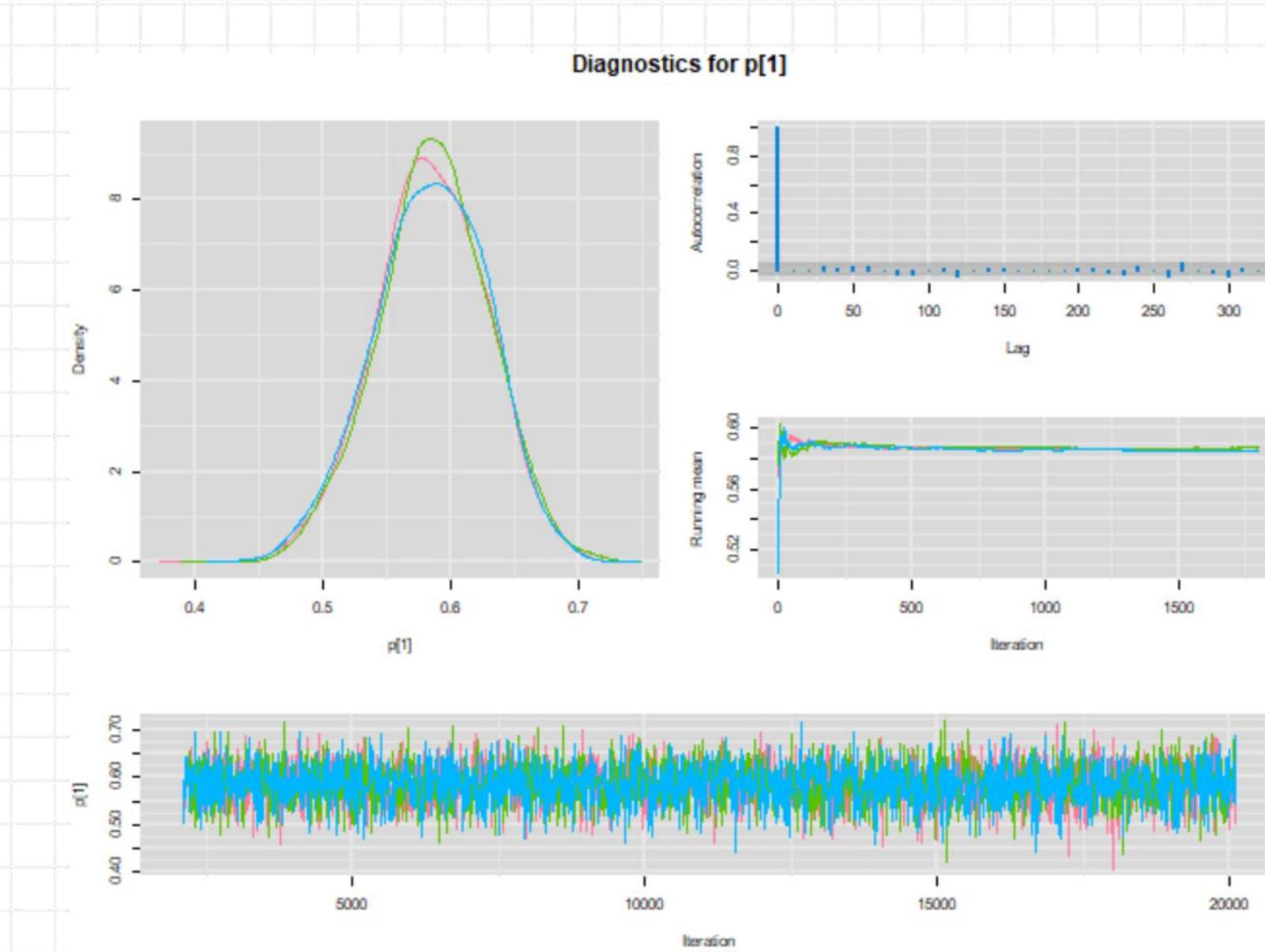
```
mcmcplot(fit$samples, parms = c("psi", "gamma[1]", "phi[1]", "p[1]"))
```

Diagnostics for phi[1]



```
fit <- jags(data  
            inits  
            parameters.to.save = params,  
            model.file  
            n.chains  
            n.iter  
            n.burnin  
            n.thin  
            parallel  
            = bugs_data,  
            = inits,  
            = parameters.to.save,  
            = model.file,  
            = n.chains,  
            = n.iter,  
            = n.burnin,  
            = n.thin,  
            = parallel  
            = TRUE)
```

Diagnostics for p[1]



Results Comparison

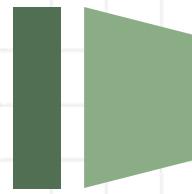
Parameter	Mean	SD	$q_{0.025}$	$q_{0.500}$	$q_{0.975}$
p_1	0.584	0.044	0.493	0.584	0.666
p_2	0.493	0.037	0.422	0.493	0.564
p_3	0.566	0.033	0.504	0.566	0.629
p_4	0.574	0.037	0.499	0.574	0.643
ϕ_1	0.806	0.069	0.656	0.812	0.931
ϕ_2	0.855	0.046	0.758	0.858	0.938
ϕ_3	0.682	0.053	0.576	0.682	0.791
γ_1	0.259	0.037	0.189	0.257	0.334
γ_2	0.190	0.041	0.114	0.189	0.273
γ_3	0.071	0.029	0.022	0.068	0.133
ψ_1	0.242	0.029	0.190	0.241	0.300
ψ_2	0.391	0.035	0.323	0.390	0.461
ψ_3	0.450	0.034	0.386	0.450	0.517
ψ_4	0.346	0.032	0.286	0.345	0.409
$\psi_1^{(fs)}$	0.240	0.0124	0.222	0.237	0.271
$\psi_2^{(fs)}$	0.389	0.0210	0.353	0.387	0.436
$\psi_3^{(fs)}$	0.449	0.0149	0.425	0.447	0.481
$\psi_4^{(fs)}$	0.345	0.0148	0.320	0.342	0.380
λ_1	1.635	0.201	1.284	1.619	2.085
λ_2	1.157	0.099	0.978	1.153	1.371
λ_3	0.770	0.065	0.651	0.768	0.908
τ_1	0.499	0.058	0.384	0.500	0.610
τ_2	0.259	0.056	0.151	0.258	0.371
τ_3	0.113	0.046	0.032	0.110	0.213
$\tau_1^{(fs)}$	0.498	0.032	0.429	0.500	0.555
$\tau_2^{(fs)}$	0.254	0.041	0.170	0.256	0.328
$\tau_3^{(fs)}$	0.104	0.034	0.034	0.103	0.170

##	mean	sd	2.5%	50%	97.5%
## psi	0.239	0.028	0.188	0.238	0.298
## gamma[1]	0.258	0.037	0.190	0.256	0.333
## gamma[2]	0.188	0.040	0.114	0.187	0.269
## gamma[3]	0.070	0.028	0.021	0.068	0.131
## phi[1]	0.813	0.067	0.673	0.816	0.931
## phi[2]	0.856	0.045	0.759	0.859	0.935
## phi[3]	0.685	0.053	0.581	0.685	0.790
## p[1]	0.586	0.045	0.497	0.586	0.671
## p[2]	0.493	0.037	0.421	0.492	0.567
## p[3]	0.565	0.032	0.503	0.565	0.627
## p[4]	0.573	0.038	0.498	0.574	0.646
## psivec[1]	0.239	0.028	0.188	0.238	0.298
## psivec[2]	0.391	0.036	0.323	0.390	0.463
## psivec[3]	0.449	0.034	0.383	0.449	0.517
## psivec[4]	0.347	0.032	0.285	0.346	0.411
## psi_fs	0.237	0.012	0.217	0.236	0.266
## growthr[2]	1.648	0.196	1.305	1.635	2.077
## growthr[3]	1.156	0.096	0.986	1.150	1.361
## growthr[4]	0.773	0.066	0.648	0.770	0.908
## turnover[1]	0.502	0.057	0.387	0.505	0.609
## turnover[2]	0.256	0.056	0.147	0.255	0.367
## turnover[3]	0.112	0.046	0.031	0.109	0.208
## tau_fs[1]	0.499	0.033	0.427	0.500	0.556
## tau_fs[2]	0.252	0.041	0.165	0.254	0.328
## tau_fs[3]	0.103	0.033	0.035	0.103	0.169
## deviance	1517.098	37.306	1447.630	1515.759	1592.427

PART FIVE

Improvements

Bayesian Statistics



Adding Covariates

precipitation & temperature & forest-area

$$\text{logit}(\gamma_t) = \beta_0 + \beta_1 \cdot \text{precip}_t, \quad t = 1, 2, 3$$

$$\text{logit}(\phi_t) = \eta_0 + \eta_1 \cdot \text{precip}_t, \quad t = 1, 2, 3$$

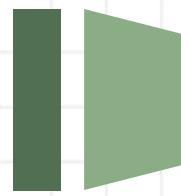
$$\text{logit}(p_t) = \alpha_0 + \alpha_1 \cdot \text{precip}_t, \quad t = 1, 2, 3, 4$$

weakly informative prior

$$\beta_0 \sim \mathcal{N}(0, 100), \quad \beta_1 \sim \mathcal{N}(0, 100)$$

$$\eta_0 \sim \mathcal{N}(0, 100), \quad \eta_1 \sim \mathcal{N}(0, 100)$$

$$\alpha_0 \sim \mathcal{N}(0, 100), \quad \alpha_1 \sim \mathcal{N}(0, 100)$$



Model Comparison

	Intercept	Coefficient	Deviance	DIC
add precipitation to γt	-1.623	-0.511	1500.105	<u>2190.337</u>
add precipitation to φt	1.429	-0.582	1520.727	2228.706
add precipitation to ρt	0.203	0.120	1513.370	2228.804
add temperature to γt	-1.724	-0.676	1523.391	2211.273
add temperature to φt	1.566	-0.646	1533.745	2289.692
add temperature to ρt	0.228	-0.061	1509.025	<u>2177.631</u>
add forest-area to γt	-1.751	-0.753	1521.095	2202.394
add forest-area to φt	1.533	-0.621	1530.826	2231.781
add forest-area to ρt	0.212	0.042	1511.412	2218.879

add temperature to p_t

DIC info: ($pD = \text{var}(\text{deviance})/2$)

$pD = 668.6$ and $\text{DIC} = 2177.631$

DIC is an estimate of expected predictive error (lower is better).

	mean <dbl>	sd <dbl>	2.5% <dbl>	50% <dbl>	97.5% <dbl>
alpha0	0.228	0.079	0.071	0.228	0.381
alpha1	-0.061	0.086	-0.229	-0.063	0.106
phi[1]	0.777	0.068	0.637	0.779	0.901
phi[2]	0.865	0.045	0.770	0.868	0.944
phi[3]	0.681	0.052	0.577	0.681	0.780
gamma[1]	0.243	0.034	0.181	0.242	0.313
gamma[2]	0.210	0.038	0.141	0.209	0.287
gamma[3]	0.066	0.029	0.017	0.063	0.127
p[1]	0.567	0.026	0.516	0.567	0.618
p[2]	0.548	0.021	0.507	0.548	0.588
	mean <dbl>	sd <dbl>	2.5% <dbl>	50% <dbl>	97.5% <dbl>
					tau_fs[1]
					0.492
					tau_fs[2]
					0.287
					tau_fs[3]
					0.095
					deviance

Parameter	Mean	SD	$q_{0.025}$	$q_{0.500}$	$q_{0.975}$
p_1	0.584	0.044	0.493	0.584	0.666
p_2	0.493	0.037	0.422	0.493	0.564
p_3	0.566	0.033	0.504	0.566	0.629
p_4	0.574	0.037	0.499	0.574	0.643
ϕ_1	0.806	0.069	0.656	0.812	0.931
ϕ_2	0.855	0.046	0.758	0.858	0.938
ϕ_3	0.682	0.053	0.576	0.682	0.791
γ_1	0.259	0.037	0.189	0.257	0.334
γ_2	0.190	0.041	0.114	0.189	0.273
γ_3	0.071	0.029	0.022	0.068	0.133
ψ_1	0.242	0.029	0.190	0.241	0.300
ψ_2	0.391	0.035	0.323	0.390	0.461
ψ_3	0.450	0.034	0.386	0.450	0.517
ψ_4	0.346	0.032	0.286	0.345	0.409
$\psi_1^{(fs)}$	0.240	0.0124	0.222	0.237	0.271
$\psi_2^{(fs)}$	0.389	0.0210	0.353	0.387	0.436
$\psi_3^{(fs)}$	0.449	0.0149	0.425	0.447	0.481
$\psi_4^{(fs)}$	0.345	0.0148	0.320	0.342	0.380
λ_1	1.635	0.201	1.284	1.619	2.085
λ_2	1.157	0.099	0.978	1.153	1.371
λ_3	0.770	0.065	0.651	0.768	0.908
τ_1	0.499	0.058	0.384	0.500	0.610
τ_2	0.259	0.056	0.151	0.258	0.371
τ_3	0.113	0.046	0.032	0.110	0.213
$\tau_1^{(fs)}$	0.498	0.032	0.429	0.500	0.555
$\tau_2^{(fs)}$	0.254	0.041	0.170	0.256	0.328
$\tau_3^{(fs)}$	0.104	0.034	0.034	0.103	0.170

add precipitation to γ_t & add temperature to p_t

DIC info: (pD = var(deviance)/2)

pD = 685.9 and DIC = 2184.249

DIC is an estimate of expected predictive error (lower is better).

	mean <dbl>	sd <dbl>	2.5% <dbl>	50% <dbl>	97.5% <dbl>		mean <dbl>	sd <dbl>	2.5% <dbl>	50% <dbl>	97.5% <dbl>	
beta0	-1.626	0.145	-1.919	-1.622	-1.349							
beta1	-0.552	0.201	-0.959	-0.544	-0.174	psi_fs[3]	0.448	0.014	0.423	0.446	0.476	
alpha0	0.236	0.078	0.087	0.237	0.390	psi_fs[4]	0.348	0.015	0.322	0.348	0.378	
alpha1	-0.024	0.085	-0.186	-0.024	0.145	growthr[2]	1.307	0.124	1.084	1.300	1.567	
phi[1]	0.768	0.067	0.629	0.770	0.891	growthr[3]	1.387	0.103	1.201	1.381	1.601	
phi[2]	0.854	0.046	0.755	0.857	0.936	growthr[4]	0.809	0.067	0.682	0.808	0.944	
phi[3]	0.679	0.054	0.574	0.679	0.786	turnover[1]	0.410	0.055	0.308	0.408	0.520	
gamma[1]	0.174	0.020	0.137	0.173	0.214	turnover[2]	0.382	0.041	0.303	0.382	0.466	
gamma[2]	0.250	0.034	0.187	0.249	0.320	turnover[3]	0.160	0.043	0.085	0.157	0.254	
gamma[3]	0.102	0.027	0.056	0.101	0.163							
	mean <dbl>	sd <dbl>	2.5% <dbl>	50% <dbl>	97.5% <dbl>		tau_fs[1]	0.467	0.035	0.391	0.469	0.527
							tau_fs[2]	0.313	0.027	0.258	0.314	0.365
							tau_fs[3]	0.120	0.030	0.065	0.118	0.181
							deviance	1498.364	37.036	1430.433	1496.774	1573.600

Parameter	Mean	SD	q _{0.025}	q _{0.500}	q _{0.975}
p_1	0.584	0.044	0.493	0.584	0.666
p_2	0.493	0.037	0.422	0.493	0.564
p_3	0.566	0.033	0.504	0.566	0.629
p_4	0.574	0.037	0.499	0.574	0.643
ϕ_1	0.806	0.069	0.656	0.812	0.931
ϕ_2	0.855	0.046	0.758	0.858	0.938
ϕ_3	0.682	0.053	0.576	0.682	0.791
γ_1	0.259	0.037	0.189	0.257	0.334
γ_2	0.190	0.041	0.114	0.189	0.273
γ_3	0.071	0.029	0.022	0.068	0.133
ψ_1	0.242	0.029	0.190	0.241	0.300
ψ_2	0.391	0.035	0.323	0.390	0.461
ψ_3	0.450	0.034	0.386	0.450	0.517
ψ_4	0.346	0.032	0.286	0.345	0.409
$\psi_1^{(fs)}$	0.240	0.0124	0.222	0.237	0.271
$\psi_2^{(fs)}$	0.389	0.0210	0.353	0.387	0.436
$\psi_3^{(fs)}$	0.449	0.0149	0.425	0.447	0.481
$\psi_4^{(fs)}$	0.345	0.0148	0.320	0.342	0.380
λ_1	1.635	0.201	1.284	1.619	2.085
λ_2	1.157	0.099	0.978	1.153	1.371
λ_3	0.770	0.065	0.651	0.768	0.908
τ_1	0.499	0.058	0.384	0.500	0.610
τ_2	0.259	0.056	0.151	0.258	0.371
τ_3	0.113	0.046	0.032	0.110	0.213
$\tau_1^{(fs)}$	0.498	0.032	0.429	0.500	0.555
$\tau_2^{(fs)}$	0.254	0.041	0.170	0.256	0.328
$\tau_3^{(fs)}$	0.104	0.034	0.034	0.103	0.170

2025

Bayesian Statistics (STA306) Final Project

THANK YOU FOR LISTENING

Group Member

Zihan Zhang
Xinyu Zhang

Qianyu Yang
Siqing Li