Content-Aware Image Resizing with
Seam Carving

Author: [Z=BH5 12212964; KFif 12210464; ERIEIS 12212252]

Team Role

Li Siging is responsible for algorithm development, including energy function calculation, shortest
path determination, and image shrinking and enlarging algorithm implementation.

Zhang Zihan is responsible for building the repository and primarily focuses on the development
of the GUI basics, including file operations, image display, and other human-computer button
designing,as well as collaboratively complete the basic parts of the algorithm.

Ou Weijuan is in charge of implementing the image enlargement functionality and the human-
computer interaction part, as well as contributing to report writing.

Introduction

In the field of image processing, resizing images without compromising their visual content is a
challenging task. Traditional resizing methods often result in distorted or cropped images, losing
important details. To address this issue, we implemented a seam carving algorithm that allows
content-aware resizing by intelligently removing or adding seams (paths of pixels) with the least
energy. This report outlines the methodology behind our energy function calculation, shortest
path determination, image resizing, and enlargement algorithms. By leveraging dynamic
programming and user-defined energy adjustments, we ensure the preservation of essential
image features during resizing operations.

Part 1: Energy Function Calculation in Image
Processing

The energy function calculation is a crucial step in image processing tasks, particularly in
applications such as seam carving for content-aware image resizing. The energy function
measures the importance of each pixel in an image based on its surrounding pixels, highlighting
areas with significant intensity changes which often correspond to edges or boundaries within the
image. This section elaborates on the methodology used for calculating the energy values of
pixels in an image and converting these values into a normalized grayscale image for visualization
purposes.

1. Energy Calculation

The energy of a pixel is determined by evaluating the gradient magnitude at that pixel. The
gradient measures the rate of change of intensity in the image, with larger changes indicating
more significant features. For an RGB image, the energy at each pixel is calculated using the
following steps:

1. Gradient Computation:

o The gradients in the x-direction (gradientx) and y-direction (gradienty) are computed
separately.

af://n0
af://n316
af://n7
af://n9
af://n11

o For each pixel at coordinates (x, y), the gradients are calculated using the intensity
differences with its neighboring pixels:

Color left = picture.get(x - 1, y);
Color right = picture.get(x + 1, y);
Color up = picture.get(x, y - 1);
Ccolor down = picture.get(x, y + 1);
double gradientX Math.pow(right.getRed() - left.getRed(), 2)
Math.pow(right.getGreen() - left.getGreen(), 2)
Math.pow(right.getBlue() - left.getBlue(), 2);

+ +

double gradientY = Math.pow(down.getRed() - up.getRed(), 2)
Math.pow(down.getGreen() - up.getGreen(), 2)

Math.pow(down.getBlue() - up.getBlue(), 2);

+ +

2. Energy Calculation:

e The energy value for the pixel is the sum of the gradients in both directions:
double energy = gradientX + gradienty;

3. Border Handling:

o Pixels at the borders of the image are assigned a maximum energy value to ensure they
are not part of the seams during the seam carving process. This is because border
pixels do not have enough neighboring pixels to compute accurate gradients.

if (isBorder(x, y, picture)) {
return BORDER_ENERGY;

2. Energy Matrix Conversion to Grayscale Image

To visualize the energy distribution across the image, the calculated energy values are converted
into a normalized grayscale image. This process involves the following steps:

1. Normalization:

o The energy values are normalized by dividing each value by the maximum energy value
in the matrix. This ensures that the energy values range from 0 to 1, where 1
corresponds to the maximum energy.

double maxval = calculateMaximumvalue(energy);

float normalizedGrayvalue = (float) energy[il[j] / (float) maxval;
color color = new Color(normalizedGrayvalue, normalizedGrayvalue,
normalizedGrayvalue) ;

2. Image Creation:

o Anew BufferedImage is created, and each pixel is assigned a grayscale color based on
its normalized energy value. This visualization aids in understanding the importance of
different regions in the image.

af://n36

BufferedImage image = new BufferedImage(width, height,
BufferedImage.TYPE_INT_RGRB);
image.setRGB(i, j, color.getRGB());

3. User-Selected Energy Adjustment

In interactive applications, users may want to protect or remove specific regions of an image. This
requires recalculating the energy values based on user selection:

1. User Selection Matrix:

o A matrix userselection is provided, where each element indicates whether a pixel
should be protected (value 1) or removed (value -1). Pixels with no special designation
have a value of 0.
2. Energy Adjustment:

o For protected pixels, the energy value is set to the maximum energy to prevent them
from being part of any seam.

o For pixels marked for removal, the energy value is set to zero, indicating they should be
included in the seam.

if (isvertical) {
if (userselection[x][y] == 1) {
energy[x] [y] = BORDER_ENERGY;

}
if (userselection[x][y] == -1) {
energy[x][y] = 0;
}
} else {

if (userselection[y][x] == 1) {
energy[x] [y] = BORDER_ENERGY;

}
if (userselection[y][x] == -1) {
energy[x][y] = 0;
}
}
4. Example

energy processing

af://n52
af://n68

energy processing

(with protection)

This approach to energy calculation and adjustment ensures that the resulting image processing
tasks, such as seam carving, are performed efficiently while respecting user preferences and
maintaining the integrity of important image features.

Part 2: Shortest Path Calculation Using Dynamic
Programming

The shortest path calculation in the context of seam carving is a critical step that determines the
optimal seam (a connected path of pixels from one edge to the opposite edge) with the least total
energy. This step employs a dynamic programming approach to efficiently find the minimum
energy seam. The following sections describe the methodology in detail.

1. Initialization of the Energy Matrix

The process begins with the initialization of an energy matrix, where each element represents the
energy of the corresponding pixel in the image. This matrix is derived from the gradient
magnitudes calculated for each pixel, as described in the energy function calculation section.

2. Construction of the Lookup Table

The lookup table, denoted as paths, is a 2D array where paths[x][y] stores the minimum
cumulative energy required to reach the pixel at (x, y) from the top of the image. The
construction of this table proceeds as follows:
1. Bottom Row Initialization:
o The last row of the lookup table is initialized with the energy values of the
corresponding pixels:

paths|z|[height — 1] = energy[z|[height — 1]

o This step sets the base case for the dynamic programming recursion.
2. Filling the Lookup Table:

o Starting from the second-to-last row and moving upwards, each entry in the lookup
table is filled using the following recurrence relation:

paths|z][y] = encrgy[a][y] + min(paths[z — 1]fy + 1], paths[a]y + 1], paths[z + 1][y + 1])

o This formula ensures that each pixel's entry in the lookup table reflects the minimum
energy path to reach that pixel from the previous row, considering the three possible
preceding pixels (top-left, top, top-right).

af://n72
af://n74
af://n76

3. Seam ldentification

Once the lookup table is fully constructed, the optimal seam is identified by tracing back from the
top row to the bottom row:

1. Finding the Starting Point:
o The starting point of the seam is the pixel in the top row with the smallest cumulative

energy value:

Tstart = arg min paths|z|[0]

o This identifies the beginning of the seam.
2. Tracing the Seam:

o The seam is traced back by selecting the pixel with the minimum cumulative energy
from the three possible preceding pixels in the next row down:
z+1
seam[y] = arg ‘minl pathsli][y + 1]

1=T—

o This process is repeated for each row from top to bottom, forming the seam.

4. Improved Implementation

The improved implementation introduces several optimizations to enhance performance:

1. Parallel Computing:

o Java's parallel streams (IntStream.range() .parallel()) are utilized to initialize the
bottom row and compute the cumulative energy for each pixel in parallel. This
significantly reduces the computation time, especially for large images.

2. Heuristic Pruning:

o During the cumulative energy calculation, the algorithm minimizes unnecessary
computations by only considering valid neighboring pixels. This reduces the number of
comparisons and updates required, leading to faster execution.

3. Memory Optimization:

o The algorithm updates the user selection region in-place and avoids creating
unnecessary intermediate arrays. This reduces the memory footprint and enhances the
efficiency of the algorithm.

Detailed Steps

1. Bottom Row Initialization:

o The bottom row of the lookup table is populated with the energy values from the
energy matrix using a parallel stream:

IntStream.range(0, width).parallel().foreach(x -> {
paths[x][height - 1] = energy[x][height - 1];
B;

2. Cumulative Energy Calculation:

o For each row from the second-to-last to the top, the cumulative energy is computed in
parallel:

af://n95
af://n114
af://n132

for (int y = height - 2; y >= 0; y--) {
IntStream.range(0, width).parallel().forEach(x -> {
double min = Double.MAX_VALUE;
for (inti=x-1; 1 <=x+1; i++) {
if (i >= 0 && i < width && paths[i]l[y + 1] < min) {
min paths[i][y + 1];

}
paths[x][y]

min + energy[x][yl;

1))8

3. Finding the Shortest Path:

o After constructing the lookup table, the algorithm identifies the seam with the lowest
cumulative energy:

private int[] lookupShortestPath(double[][] Tookup) {
int width = Tookup.length;
double shortest = lookup[0][0];
int minX = 0;
for (int x = 1; x < width; x++) {
if (lookup[x][0] < shortest) {
minX = X;
shortest = Tookup[x][0];

3
return findPathstartingAt(Tookup, minX);

private int[] findPathStartingAt(double[][] lookup, int x) {
int height = lookup[0].length;
int[] path = new int[height];
path[0] = x;
for (inty = 1; y < height; y++) {
path[y] = min(lookup, y, pathl[y - 11);
}

return path;

The optimized shortest path calculation using dynamic programming, parallel computing,
heuristic pruning, and memory optimization significantly improves the efficiency of the seam
carving algorithm. These enhancements ensure that the algorithm can handle large images more
effectively, providing faster and higher quality resizing.

Part 3: Image Resizing using Seam Carving
Algorithm

Image resizing is used to adapt images to different display sizes or aspect ratios. Seam carving is
an advanced technique for resizing images while preserving important content and minimizing
distortion. This section explains the implementation of seam carving for image resizing and its key
components, including the removal and addition of seams, as well as handling user selections.

af://n153

1. Seam Carving Algorithm Overview

Seam carving involves iteratively removing or adding seams, which are connected paths of pixels,
from the image. These seams typically span the entire width or height of the image and pass
through low-energy regions. By intelligently selecting seams to remove, the image can be resized
while minimizing the distortion of important features.

2. Image Resizing Procedure

The image resizing process involves the following steps:
1. Initialization:

o Initialize the energy calculator and stacks to store vertical and horizontal seams.
o Accept user input specifying the number of columns and rows to remove from the
image.

public Picture resize(Picture initialPicture, int removeColumns, int
removeRows, int[][] selection) {

userSelection = selection;

verticalSeams = new Stack<>(Q);

horizontalSeams = new Stack<>();

Picture picture = removeColumns(initialPicture, removeColumns, true);

picture = removeRows(picture, removeRows);

return picture;

2. Seam Removal:

o Calculate the energy of the image pixels using the energy calculator.
o ldentify the seams with the lowest energy using dynamic programming-based shortest
path algorithms.

o Remove the identified seams from the image by eliminating the corresponding pixels.
o Update the user selection matrix to reflect changes in the image dimensions.

private Picture removeColumns(Picture picture, int removeColumns, boolean
isvertical) {
for (int i = 0; i < removecColumns; i++) {
double[][] energy = energyCalculator.computeSelectedEnergy(picture,
userSelection, isvertical);
int[] seam = findSeam(energy);
picture = removeSeam(picture, seam, isVertical);
if (isvertical) {
verticalSeams.push(seam) ;
} else {
horizontalSeams.push(seam);

}

return picture;

private Picture removeSeam(Picture picture, int[] seam, boolean isVertical)
{
Picture newPicture = new ArrayPicture(picture.getwidth() - 1,
picture.getHeight());
for (inty = 0; y < picture.getHeight(Q); y++) {
int i = 0;

af://n155
af://n157

for (int x = 0; x < picture.getWwidth(Q); x++) {
if (x !'= seam[y]) {
newPicture.set(i++, y, picture.get(x, y));

}

// Update user selection area

userSelection = updateUserSelection(userSelection, seam, isVertical,
newPicture);

return newPicture;

private int[][] updateuUsersSelection(int[][] userSelection, int[] seam,
boolean isvertical, Picture newPicture) {
int[][] newuUserSelection;
if (isvertical) {
newUserSelection = new int[newPicture.getwidth()]
[newPicture.getHeight(];
for (int y = 0; y < newPicture.getHeight(); y++) {
int i = 0;
for (int x = 0; x < newPicture.getWwidth(); x++) {
if (x !'= seam[y]) {
newUserSelection[i++][y] = userSelection[x][y];

}
} else {
newUserSelection = new int[newPicture.getHeight()]
[newPicture.getwidth(Q];

for (inty = 0; y < newPicture.getwidth(Q); y++) {

int i = 0;

for (int x = 0; x < newPicture.getHeight(); x++) {

if (y !'= seam[x]) {
newUserSelection[i++][y] = userSelection[x][y];

}

return newuUsersSelection;

3. Finalization:

o Convert the modified image to a buffered image for display or further processing.

for (int x 0; x < picture.getwidth(Q); x++) {
for (int y 0; y < picture.getHeight(Q); y++) {
bufferedPicture.set(x, y, picture.get(x, y));

}

}

return bufferedpPicture;

3. Handling User Selections

Users may specify regions of the image to protect or remove during resizing. This is achieved
through the userselection matrix, where each element indicates whether a pixel should be
protected (value 1) or removed (value -1). This matrix is updated dynamically during the seam
removal process to ensure that user selections are respected.

4.Example

600 x 400 400 x 300

compressed

ST

824 x 462

compressed

Part 4: Image Enlargement Algorithm

The seamcCarverenlarge class is designed to enlarge images by adding seams with the lowest
energy. This process ensures minimal disruption to the visual content of the image. The
enlargement involves a series of steps that focus on energy calculation, seam identification, and
image reconstruction.

1. Initialization

e The algorithm begins by initializing structures to track the vertical and horizontal seams that
will be added to the image.

e Asetis also initialized to track unique energy levels, which helps in avoiding the addition of
seams with similar energy values, thereby maintaining the visual quality of the image.

2. Energy Calculation

e The initial energy matrix of the image is computed. This matrix represents the "energy" or
importance of each pixel in the image, with lower energy values indicating less important
pixels that are more suitable for seam insertion.

3. Seam Addition

e Seams are added iteratively to the image. The number of seams to be added is specified by
the user in terms of columns and rows.

e For each seam addition, the algorithm identifies the path of lowest energy and updates the
image by inserting a new seam along this path. This ensures that the added seams blend
seamlessly with the existing content.

af://n186
af://n188
af://n191
af://n193
af://n199
af://n203

private Picture addSeam(Picture picture, int[] seam) {
Picture newPicture = new ArrayPicture(picture.getwidth() + 1,
picture.getHeight());
for (inty = 0; y < picture.getHeight(); y++) {
int i = 0;
for (int x = 0; x < picture.getwidth(); x++) {
newPicture.set(i++, y, picture.get(x, y));
if (x == seam[y]) {
newPicture.set(i++, y, picture.get(x, y));

}

return newPicture;

4. Energy Matrix Update

e After each seam is added, the energy matrix is updated to reflect the changes in the image
structure. This involves recalculating the energy values around the newly added seams to
ensure that subsequent seams are added in the optimal locations.

e Aboostin energy is applied to the newly created seams to prevent them from being selected
again, which helps maintain the integrity of the added seams.

e By adding the energy boost, the seam that is previously selected have a lower probability of
being selected again, in order to reduce the possibility of duplicate selections adding the
same seam.

private double[][] updateEnergy(double[][] energy, int[] seam) {
int ENERGY_BOOST = 20020;
int width = energy.length;
int height = energy[0].1ength;
double[][] newEnergy = new double[width + 1][height];
for (int y = 0; y < height; y++) {
int i = 0;
for (int x = 0; x < width; x++) {
if (x != seam[y]) {
newEnergy[i++][y]
} else {
newtEnergy[i++][y] = energy[x][y] + ENERGY_BOOST;
newEnergy[i++] [y] energy[x][y] + ENERGY_BOOST;

energy[x][y];

}

return newenergy;

5. Image Reconstruction

e The final step involves reconstructing the image by adding the calculated seams. This
process ensures that the image's dimensions are enlarged while preserving the overall visual
coherence.

e The algorithm handles the duplication of pixels along the seam paths to create a smooth
transition and avoid noticeable artifacts.

This version should be correctly formatted for Markdown. Let me know if there are any additional
changes or sections you'd like help with!

af://n210
af://n217

6. Example

600 x 400 900 x 500

enlarge

PN a5 x 462 EEEEE . s 5 350

enlarge

The image enlargement algorithm implemented in the SeamCarverenlarge class efficiently
increases the dimensions of an image by intelligently adding seams in regions of low energy. This
method preserves the important visual features of the image while expanding its size, making it
suitable for applications that require image resizing without significant loss of detail.

Part 5: Image Processing GUI

Introduction

This report describes the development process of a Java-based Image Processing GUI application.
The application provides functionalities for loading, displaying, energy computation, resizing,
enlarging images, and protecting or deleting specific areas. The application uses the Seam Carving
algorithm to achieve intelligent image resizing and offers a user-friendly graphical interface for
easy interaction.

Functionality Overview

File Operations

e File Button: A dropdown menu with "Input" and "Output" options allows users to select an
image file for processing or choose where to save the processed image.

e |Input Option: Enables users to select an image file from the file system for processing.

e Output Option: Allows users to choose a directory to save the processed image.

Image Display

¢ Image Panel: Displays the selected image and provides information about the image size.
e Scroll Pane: Contains the image panel and allows users to scroll to view large images.

Energy Computation

e Energy Button: Computes and displays the energy map of the image.

af://n224
af://n227
af://n228
af://n230
af://n231
af://n239
af://n245

Image Resizing

e Shrink Button: Allows users to input target width and height to shrink the image to the
specified dimensions.

e Enlarge Button: Allows users to input target width and height to enlarge the image to the
specified dimensions.

Area Protection and Deletion

e Protection Mode: Enables users to select areas in the image to protect, which will not be
altered during resizing.

e Delete Mode: Allows users to select areas in the image to delete, which will be prioritized for
removal during resizing.

Technical Details

Image Processing

Image processing is implemented using the Seam Carving algorithm, with methods from the
SeamcarvingRun class handling energy computation, shrinking, and enlarging operations. This
algorithm intelligently adjusts image size while preserving important content.

User Interaction

File selection is implemented using the JFilechooser component, user input for target
dimensions using JoptionpPane, and area selection and protection using MouseAdapter .

Interface Layout

The application uses JFrame as the main frame, JpPanel for image display, 3scrollpPane for
scrollable view, and BoxLayout for button layout. The interface is designed to be simple and
user-friendly, facilitating easy operation.

GUI'S Conclusions

This Image Processing GUI application provides convenient image resizing and editing
functionalities through an intuitive user interface and intelligent image processing algorithms. The
project demonstrates the potential of the Seam Carving algorithm in practical applications and
offers valuable learning and usage opportunities.

Image Processor - o x Image Processor o x

File

Energy
shrink |

Enlarge

‘Shrink With Seleetion

Original Image Size: 600 % 400 Eneray Image Size: 600 x 400

af://n249
af://n255
af://n261
af://n262
af://n264
af://n266
af://n268

4/ Image Processor

File
Energy Energy
Shrink

Shrink

[———— 1
Enlarge Enlarge
‘Shrink With Selection Shrink With Selection

x

Prot n
))

Original Image Size: 600 x 400 Original Image Size: 600 x 400

Conclusion

The dynamic programming approach efficiently calculates the shortest path through the energy
matrix, ensuring that the seam with the least energy is identified. This seam is then removed to
resize the image with minimal impact on its visual quality.

Advantages:

e Preservation of Important Features: The algorithm maintains the visual integrity of key

image regions.
e User Control: Users can protect or prioritize specific areas of the image, enhancing

customization.
e Versatility: The method works for both resizing and enlargement, making it adaptable to

various applications.

Limitations:

e Computational Complexity: The process can be computationally intensive, especially for

large images.
e Artifacts in Complex Images: In highly textured or detailed images, the algorithm might

introduce artifacts or distortions.

Overall, our seam carving implementation provides a powerful tool for content-aware image
resizing, balancing the need for size adjustment with the preservation of visual quality.

af://n270
af://n272
af://n280

	Content-Aware Image Resizing with Seam Carving
	Team Role
	Introduction
	Part 1: Energy Function Calculation in Image Processing
	1. Energy Calculation
	2. Energy Matrix Conversion to Grayscale Image
	3. User-Selected Energy Adjustment
	4. Example

	Part 2: Shortest Path Calculation Using Dynamic Programming
	1. Initialization of the Energy Matrix
	2. Construction of the Lookup Table
	3. Seam Identification
	4. Improved Implementation
	Detailed Steps

	Part 3: Image Resizing using Seam Carving Algorithm
	1. Seam Carving Algorithm Overview
	2. Image Resizing Procedure
	3. Handling User Selections
	4.Example

	Part 4: Image Enlargement Algorithm
	1. Initialization
	2. Energy Calculation
	3. Seam Addition
	4. Energy Matrix Update
	5. Image Reconstruction
	6. Example

	Part 5: Image Processing GUI
	Introduction
	Functionality Overview
	File Operations
	Image Display
	Energy Computation
	Image Resizing
	Area Protection and Deletion

	Technical Details
	Image Processing
	User Interaction
	Interface Layout

	GUI'S Conclusions

	Conclusion
	Advantages:
	Limitations:

