

000 001 002 003 004 005 HYPERPARAMETER TUNING FOR 006 FROZENLAKE-v1 ENVIRONMENT 007 008

009
010
011 Group 11:
012 YangYueqi 12211056
013 OuWeijuan 12212252
014 LiSiqing 12212964
015
016
017
018
019
020
021
022
023
024

010 ABSTRACT 011

012 This report investigates the impact of hyperparameter tuning on the performance
013 of the Deep Q-Learning (DQN) algorithm in the FrozenLake-v1 environment. Key
014 hyperparameters such as learning rate, discount factor, epsilon-greedy parameters,
015 and memory capacity were systematically analyzed using univariate and random-
016 ized search methods. The study also compares the performance of DQN with Dou-
017 ble DQN and Dueling DQN across different parameter settings. Results highlight
018 that Dueling DQN outperforms DQN in terms of stability, efficiency, and gen-
019 eralization, making it a more robust choice for complex reinforcement learning
020 tasks. Additionally, factors contributing to reward fluctuations despite decreas-
021 ing loss, such as exploration-exploitation tradeoffs and replay buffer diversity, are
022 discussed.
023
024

025 1 INTRODUCTION 026

027 Reinforcement Learning (RL) is a machine learning paradigm where agents learn by interacting with
028 an environment to maximize rewards. Deep Q-Network (DQN)(1) is an important algorithm in deep
029 reinforcement learning that combines Q-learning with deep learning techniques. In Q-learning, the
030 agent learns the state-action value function $Q(s, a)$, which represents the expected return of taking
031 action a in state s . DQN approximates the Q-value function $Q(s, a)$ using a deep neural network,
032 enabling it to handle high-dimensional state spaces (e.g., images). The input to the network is the
033 state, and the output is the Q-values for all possible actions.
034

035 The performance of DQN is highly sensitive to hyperparameters. This report investigates the im-
036 pact of these hyperparameters on DQN's performance in the FrozenLake-v1 environment. The
037 exploration begins with a baseline configuration and extends to both univariate and randomized
038 hyperparameter tuning experiments.
039

040 2 HYPERPARAMETER TUNING IN DQN 041

042 Deep Q-Network (DQN) is an algorithm that combines Q-learning with deep learning techniques
043 to address the challenges of high-dimensional state spaces in reinforcement learning. DQN utilizes
044 a deep neural network to approximate the Q-value function, which estimates the expected future
045 rewards for a given state-action pair.
046

047 2.1 BASELINE CONFIGURATION

048 A baseline configuration for DQN was established with the following parameters:
049

050 The training process involved 10000 episodes with this configuration. The results were visualized
051 through cumulative reward curves and loss curves, providing a baseline for further analysis.
052

053 The rewards(left panel) show an upward trend, stabilizing at 0.6–0.8 after 4000 episodes, indicating
054 effective policy learning. Significant fluctuations persist even after convergence, suggesting room
055 for improvement in exploration-exploitation balance.
056

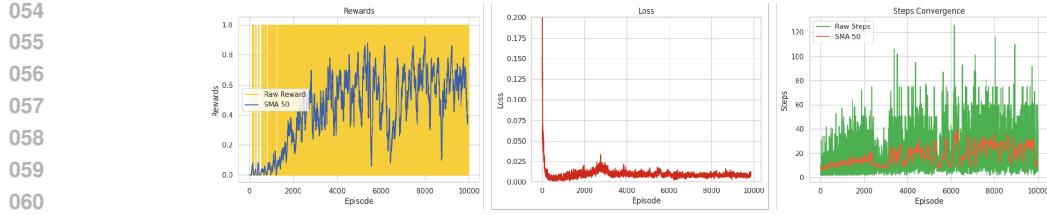


Figure 1: DQN Baseline Visualization

Loss(middle panel) decreases sharply in the first 500 episodes and stabilizes at a low value (0.01) after 1000 episodes, reflecting successful Q-value approximation. Occasional spikes in loss indicate the agent encountering rare transitions or new states. Steps Convergence(right panel) reveals the number of steps decreases and converges to 20–40 steps per episode after 4000 episodes, indicating efficient task completion. Rare spikes in steps suggest episodes with suboptimal action sequences due to exploration. The current parameter configuration enables the agent to learn effectively but shows limitations in achieving optimal performance. Adjustments, such as slower epsilon decay or reward shaping, could further enhance policy stability and convergence.

2.2 UNIVARIATE HYPERPARAMETER ANALYSIS

2.2.1 HYPERPARAMETER EXPLANATION

Univariate hyperparameter tuning was conducted to investigate the impact of varying individual hyperparameters while keeping others constant. Among the 16 parameters in the DQN algorithm, we selected five parameters that are most influential on performance for further exploration. The parameters analyzed were: **Learning Rate** $[1 \times 10^{-4}, 6 \times 10^{-4}, 1 \times 10^{-3}]$, which determines how much the model updates in response to an error during training; **Discount Factor** $[0.9, 0.93, 0.95]$, which controls the importance of future rewards in the agent's decision-making; **Epsilon Decay** $[0.995, 0.999, 0.9995]$, which gradually reduces the exploration rate (ϵ) as the agent learns; **Epsilon Min** $[0.01, 0.005, 0.0015]$ which sets the minimum exploration rate (ϵ) the agent can reach. It Ensures the agent always explores to some extent, preventing it from becoming overly exploitative; **Memory Capacity** $[2000, 4000, 8000]$, which defines the size of the replay buffer used to store past experiences for training.

For each parameter, the training process was repeated for 1000 and 10000 episodes, and the results were recorded, including rewards, loss curves, and training steps. A sliding window of size 50 was used to compute the Simple Moving Average (SMA) for smoother visualizations of rewards and steps.

2.2.2 VISUALIZATION

Custom plots were generated for each parameter to visualize loss curves, the simple moving average (SMA) of rewards, and the SMA of steps per episode over the training episodes. This methodology facilitated a detailed comparison of how each hyperparameter influences the performance of DQN.

1. Univariate Search for Learning Rate

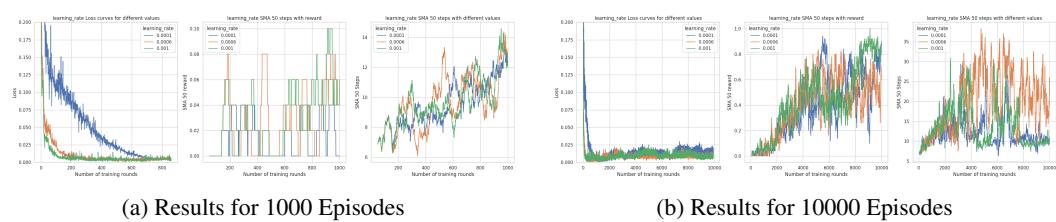
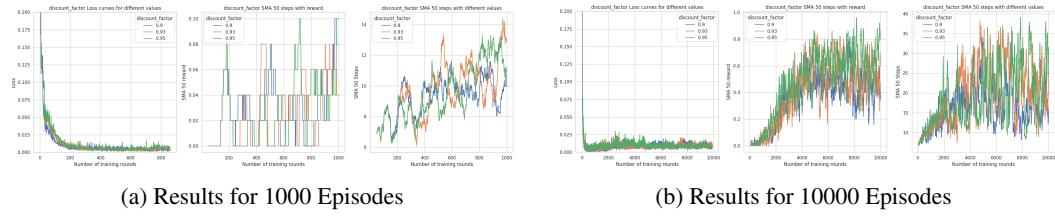


Figure 2: Learning Rate Searching Results

108 The results indicate that a moderate learning rate of 0.0006 achieves the best balance between convergence speed, stability, and performance. In contrast, the higher learning rate of 0.001 initially
 109 converged faster but displayed greater volatility in later episodes, suggesting overcorrection or instability in the Q-value updates. The lowest learning rate of 0.0001 remained the slowest to converge,
 110 stabilizing at a higher loss value of approximately 0.01. Therefore, 0.0006 is the optimal choice for
 111 further experiments and refinement.
 112

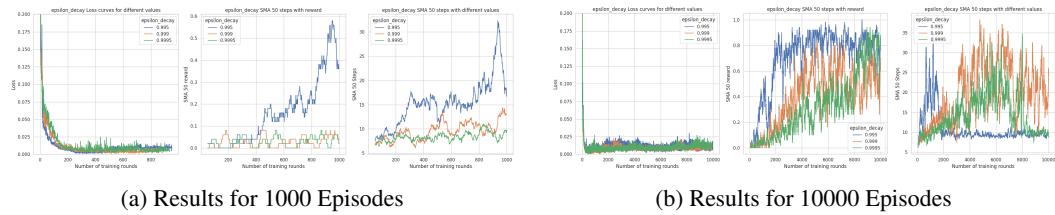
114 2. Univariate Search for Discount Factor



123 Figure 3: Discount Factor Searching Results

124 The results demonstrate that a discount factor of 0.95 yields the best overall performance, maintaining
 125 a stable and low loss. In comparison, a discount factor of 0.93, slightly reduces the emphasis on
 126 future rewards, which has a less effective exploration of long-term strategies. The lowest discount
 127 factor, 0.9, converges more quickly but prioritizes immediate rewards. This short-sightedness can
 128 lead to suboptimal policies, as the agent may fail to recognize the value of delayed rewards.

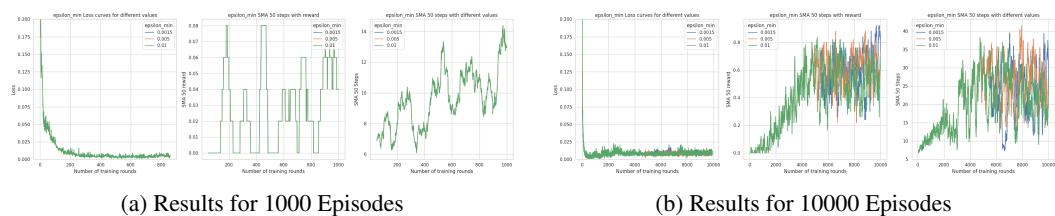
131 3. Univariate Search for Epsilon Decay



140 Figure 4: Epsilon Decay Searching Results

141 The results indicate that an epsilon decay of 0.995 achieves the best balance between exploration and exploitation, leading to higher rewards and fewer steps per episode while maintaining stable and low loss over 5000 episodes. In contrast, smaller epsilon decay may shows faster initial convergence but results in erratic rewards and higher steps due to insufficient exploration. Meanwhile, 0.9995 promotes excessive exploration, leading to slower convergence and lower overall performance.

147 4. Univariate Search for Epsilon Min

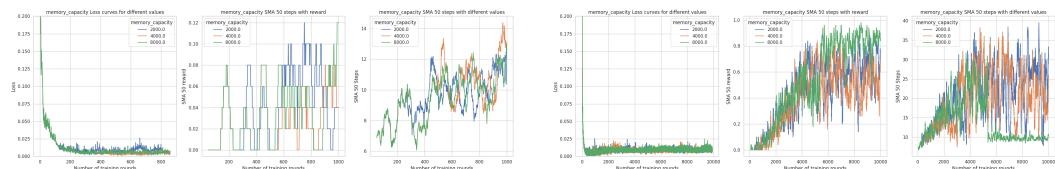


157 Figure 5: Epsilon Min Searching Results

158 The overlap in curves for different epsilon minimum values (epsilon min) happens because epsilon just sets the minimum exploration level. During training, epsilon gradually decreases, making epsilon min important only later. This delay means the agent's performance is similar early on, with differences showing only later when exploration-exploitation balance matters.

162 Results show that epsilon min of 0.005 gives the best, yielding higher rewards and fewer steps over
 163 5000 episodes with low, stable loss. Lower (0.0015) or higher (0.01) values lead to slower conver-
 164 gence or inefficient policies, respectively. Thus, 0.005 is the best choice for future experiments.
 165

166 5. Univariate Search for Memory Capacity



(a) Results for 1000 Episodes

(b) Results for 10000 Episodes

175 Figure 6: Memory Capacity Searching Results

177 The results demonstrate that a memory capacity of 8000 achieves the best balance between per-
 178 formance, stability, and efficiency. A smaller memory capacity (2000) learns faster but has larger
 179 fluctuations and unstable long-term performance; a larger memory capacity (8000) learns slower but
 180 has higher final rewards and more stable performance, making it suitable for scenarios that require
 181 long-term results.

182 2.3 RANDOMIZED HYPERPARAMETER SEARCH

184 It is evident that exploring a single variable is insufficient for comprehensive hyperparameter tuning,
 185 as optimizing an individual hyperparameter does not guarantee the identification of the optimal
 186 combination for the model. To address this, a randomized search strategy was employed to optimize
 187 the hyperparameters of the DQN agent. This section presents two distinct approaches: *random grid*
 188 *search* and *Optuna-based optimization*, accompanied by a thorough analysis of their results and
 189 corresponding visualizations.

191 2.3.1 RANDOM GRID SEARCH

193 The initial stage of hyperparameter tuning involved a random grid search across a limited parameter
 194 space. Grid search can help us determine a parameter optimization interval. The key hyperparam-
 195 meters and their ranges included the learning rate (η) values of $[6 \times 10^{-4}, 7 \times 10^{-4}, 8 \times 10^{-4}]$,
 196 the discount factor (γ) values of $[0.95, 0.96, 0.98]$, the epsilon decay rate (ϵ_{decay}) options of
 197 $[0.998, 0.999, 0.9995]$, the minimum epsilon (ϵ_{min}) values of $[0.005, 0.0055]$, and the memory ca-
 198 pacity ranging from $[4000, 8000]$.

199 A total of 30 configurations were evaluated, each trained for 5000 episodes. The performance metrics
 200 included the average rewards and average losses calculated over the last 100 episodes, along with
 201 their respective variances. Figure 7a visualizes the average loss and reward across the experiments.
 202 The best-performing configuration achieved an average reward of 0.880 with an average loss of
 203 0.0072 (highlighted in orange).

204 As shown in Figure 7a, the reward distribution varied significantly across experiments, reflecting
 205 the sensitivity of the agent's performance to hyperparameters. While most configurations yielded
 206 moderate rewards, a few configurations outperformed others, demonstrating the importance of fine-
 207 tuning. The comparison of loss and reward metrics further reveals a trade-off between optimizing
 208 reward and minimizing loss. Additionally, reward variance across experiments indicates variability,
 209 with the most stable configuration achieving a variance of 0.0099.

210 2.3.2 OPTUNA-BASED OPTIMIZATION

212 Optuna is an automatic hyperparameter optimization framework that explores the parameter space
 213 through efficient sampling algorithms, terminates inefficient experiments in advance using pruning
 214 algorithms, and supports parallel optimization and multi-objective optimization to accelerate the
 215 parameter tuning process of machine learning models. It also provides visualization tools to help
 analyze and understand the impact of hyperparameters.

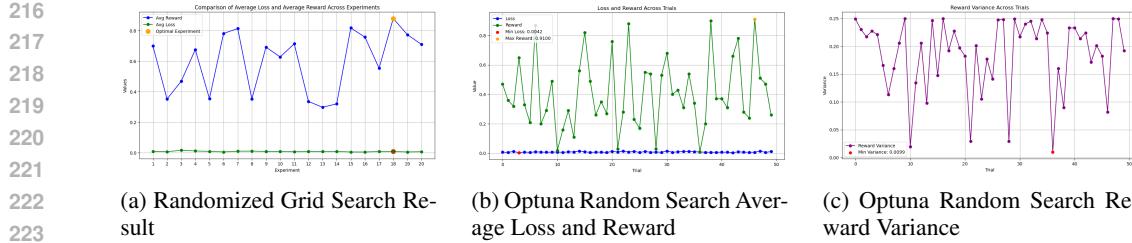


Figure 7: Results for Random Search

To further refine hyperparameter tuning, Optuna-based multi-objective optimization was employed, expanding the parameter search space as follows: the learning rate (η) ranges from 1×10^{-4} to 1×10^{-3} (log scale), the discount factor (γ) spans [0.85, 1.0], the epsilon decay rate (ϵ_{decay}) is set between [0.85, 1.0], the minimum epsilon (ϵ_{min}) varies from [0.001, 0.2], and the memory capacity ranges from [6000, 9000].

The objective was to minimize the average loss while maximizing the average reward (modeled as minimizing the negative reward). A total of 50 trials were conducted, with results summarized in Figure 7b. The best trial achieved an **average reward of 0.910** and an **average loss of 0.0073** using the following hyperparameters: a learning rate of 3.21×10^{-4} , a discount factor of 0.874, an epsilon decay rate of 0.908, a minimum epsilon of 0.0051, and a memory capacity of 7238.

Figure 7c highlights the reward variance across trials, with the most stable configuration achieving a variance of 0.0819. These results demonstrate the efficacy of Optuna in exploring a more granular parameter space, leading to improved performance and stability compared to the random grid search.

3 DOUBLE DQN ANALYSIS

3.1 TRADITIONAL DQN METHODS AND THEIR LIMITATIONS

Deep Q-Network (DQN) has been widely used for reinforcement learning tasks but faces notable limitations:

Redundant Computation: DQN estimates Q-values $Q(s, a)$ for all actions independently, even when the differences between actions are insignificant, leading to unnecessary computation.

Generalization Issues: Traditional DQN lacks the ability to leverage shared information between actions, resulting in poor generalization across states.

Slow Convergence: Redundant Q-value estimation slows down the learning process and affects convergence speed.

Limited Interpretability: DQN does not differentiate between the intrinsic value of a state and the relative advantage of actions, reducing the interpretability of the model.

3.2 DOUBLE DQN

Double Deep Q-Network(Double DQN)(2) is an enhancement of the DQN algorithm designed to address the "maximization bias" issue in action value prediction. In DDQN, the target Q-value Y is computed using the following equation:

$$Y = r + \gamma Q(s', \arg \max_{a'} Q(s, a; \theta); \theta^-) \quad (1)$$

where Y is the target Q-value, r is the immediate reward, s' is the next state after taking action a , θ represents the parameters of the main Q-network, and θ^- represents the parameters of the target Q-network. The key aspect of this formula is the separation of action selection and value estimation. Here's a concise overview:

270 • **Principle:** Double DQN uses two separate Q-functions to eliminate overestimation bias,
271 with one for action selection and the other for value evaluation.
272 • **Separation of Action Selection and Value Evaluation:** It selects actions based on the
273 online Q-network and evaluates their Q-values using the target Q-network, which helps to
274 reduce overestimation.
275 • **Addressing Overestimation:** By separating action selection from value evaluation, Double
276 DQN mitigates the overestimation problem, even if there's bias in the target network's
277 predictions.
278 • **Implementation:** It typically involves two identical Q-networks, experience collection, and
279 updating the online Q-network parameters using sampled experiences and calculated target
280 Q-values.
281

282 3.2.1 OPTUNA-BASED OPTIMIZATION
283

284 Optuna can be effectively utilized for hyperparameter tuning in Double DQN models.
285

286 Through 50 independent experiments aimed at minimizing losses and maximizing rewards, Optuna
287 determined the optimal parameter combination based on the average loss and reward over the last
288 100 generations. The best result obtained was a reward of 0.79, with the corresponding parameter
289 values as follows: a learning rate (η) of 0.0002158, a discount factor (γ) of 0.8786021, an epsilon
290 decay rate (ϵ_{decay}) of 0.9250076, a maximum epsilon (ϵ_{max}) of 0.9972755, a minimum epsilon (ϵ_{min})
291 of 0.0162136, and a memory capacity of 6530.

292 Although Optuna successfully selected a parameter combination that maximizes reward and
293 minimizes loss, these parameters were not satisfactory. In addition, during the model training process
294 using these parameters, the average loss and reward values of the last 100 generations showed significant
295 volatility, which may suggest issues with the stability and generalization ability of the model.
296

297 The unsatisfactory optimization results of Optuna may be due to the large parameter space or in-
298 sufficient number of experiments. When the parameter space is too wide, Optuna needs to conduct
299 more experiments to fully explore, and if the number of experiments is not enough to cover the vast
300 parameter space, it will be difficult to find the optimal solution. Due to limitations in computing
301 power, we are unable to obtain the truly optimal combination of parameters.

302 4 DUELING DQN ANALYSIS
303

304 4.1 LIMITATIONS OF DOUBLE DQN
305

306 Double DQN, despite its advancements over traditional Q-learning, has certain limitations that re-
307 strict its effectiveness in some scenarios:

308 • **Limited state value estimation:** Double DQN cannot effectively separate state value and
309 action advantage, which reduces efficiency for redundant actions.
310 • **Poor adaptability to high-dimensional action spaces:** Double DQN lacks the capability
311 to model relative action values accurately, limiting its performance in high-dimensional
312 settings.
313 • **Weaker robustness to noise:** Double DQN is less stable in noisy environments compared
314 to methods like Dueling DQN.
315 • **Slower convergence:** Double DQN exhibits a less efficient learning process, characterized
316 by slower convergence and reduced stability in contrast to Dueling DQN.
317

319 4.2 DUELING DQN: THEORY AND INNOVATIONS
320

321 Dueling DQN(3) introduces a new architecture to address these limitations by decomposing the
322 Q-value function $Q(s, a)$ into two components:

323 • **Value Function $V(s)$:** Represents the intrinsic value of the state s .

324 • **Advantage Function $A(s, a)$:** Captures the relative advantage of action a compared to
 325 other actions in the same state.
 326

327 The Q-value is computed as:
 328

329
$$Q(s, a) = V(s) + \left(A(s, a) - \frac{1}{|A|} \sum_{a'} A(s, a') \right)$$

 330
 331
 332

333 Here, $\frac{1}{|A|} \sum_{a'} A(s, a')$ normalizes the advantage function by subtracting the mean advantage, en-
 334 suring that the advantage function has a mean of zero.
 335
 336

337 4.3 COMPARISON OF DQN AND DOUBLE DQN SENSITIVITY TO A SHARED 338 HYPERPARAMETER

340 The following analysis compares the sensitivity of DQN and Double DQN to the same hyperparam-
 341 eter, highlighting their respective performance differences.

342 **Learning Rate:** Dueling DQN consistently outperforms DQN across various learning rates. While
 343 DQN performs stably only at low learning rates (e.g., 0.0001) but struggles with fluctuations at
 344 higher rates (e.g., 0.0006 and 0.001), Dueling DQN achieves smoother reward curves, faster conver-
 345 gence, and higher stability due to its architectural separation of Value and Advantage streams (see
 346 Figure 8a).

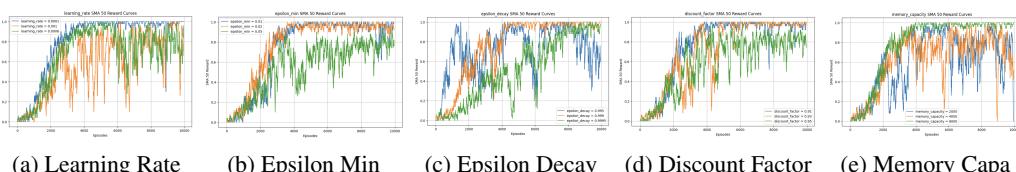
347 **Epsilon Min:** Across different minimum exploration probabilities, Dueling DQN shows superior
 348 performance. At lower values (e.g., 0.0015), both methods are stable, but Dueling DQN achieves
 349 higher final rewards. At moderate values (e.g., 0.005), it strikes a balance between exploration and
 350 exploitation, offering faster convergence and stability. At higher values (e.g., 0.01), Dueling DQN
 351 still outperforms DQN despite increased reward fluctuations (see Figure 8b).

352 **Epsilon Decay:** Dueling DQN demonstrates greater adaptability and stability across exploration
 353 decay rates. At slower decay rates (e.g., 0.995), it avoids the significant fluctuations seen in DQN.
 354 At moderate decay rates (e.g., 0.999), both methods converge quickly, but Dueling DQN achieves
 355 higher rewards. Even at faster decay rates (e.g., 0.9995), Dueling DQN mitigates early exploration
 356 stopping effectively (see Figure 8c).

357 **Discount Factor:** Dueling DQN outperforms DQN across discount factors by balancing short-term
 358 and long-term rewards more effectively. At lower discount factors (e.g., 0.91), Dueling DQN main-
 359 tains higher rewards. At higher values (e.g., 0.95), it remains stable, unlike DQN, which experiences
 360 instability. Moderate values (e.g., 0.93) offer the fastest convergence and optimal reward levels (see
 361 Figure 8d).

362 **Memory Capacity:** Dueling DQN exhibits better stability and efficiency than DQN across memory
 363 capacities. While DQN struggles at smaller capacities (e.g., 2000) and stabilizes only at larger ones
 364 (e.g., 8000), Dueling DQN maintains stability across all capacities, achieving faster convergence
 365 and higher rewards, particularly at 8000 (see Figure 8e).

366 Each hyperparameter impacts performance differently; careful tuning based on task requirements is
 367 essential (see Figure 8 for an overview).



376 Figure 8: Hyperparameter Impact on Performance of Dueling DQN
 377

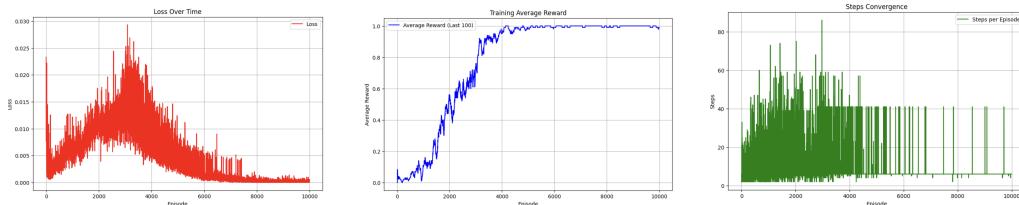
378 4.4 PERFORMANCE ANALYSIS
379

380 • **Optimal Hyperparameters:** Learning rate (η): 1×10^{-4} , Discount factor (γ): 0.93, Ep-
381 silon decay rate (ϵ_{decay}): 0.999, Maximum epsilon (ϵ_{max}): 0.999, Minimum epsilon (ϵ_{min}):
382 0.001, Memory capacity: 10,000.

383 • **Convergence Speed:** Dueling DQN converged within approximately 4000 steps during
384 training.

385 • **Average Reward:** The average reward achieved by Dueling DQN stabilized close to 1.

386 • **Loss Trend:** Dueling DQN demonstrated a more stable and smoother loss reduction
387 throughout the training process.

397 Figure 9: Best Performance Results of Dueling DQN
398
399400 4.5 ADVANTAGES OF DUELING DQN
401

402 The key advantages of Dueling DQN include: **Efficiency**, as it reduces redundant computation of
403 Q-values for similar actions; **Stability**, achieved by separating state and action characteristics to
404 improve learning robustness; **Generalization**, which enhances the model's ability to adapt across
405 different states and actions; and **Interpretability**, offering better insights into the value of states and
406 the relative importance of actions.

407 5 DISCUSSION AND CONCLUSION
408410 5.1 WHY DOES THE LOSS DECREASE WHILE REWARDS FLUCTUATE?
411

412 This section explains the phenomenon where the loss decreases while rewards exhibit fluctuations.
413 The key factors include:

414 • **Exploration vs. Exploitation Tradeoff:** As epsilon decreases, exploration is reduced,
415 and exploitation increases. However, environmental randomness can still lead to reward
416 instability.

417 • **Local Optima Jumps:** The model transitions from one local optimum to another, causing
418 changes in strategy performance and resulting in reward fluctuations.

419 • **Replay Buffer Diversity:** Updated experience samples shift the data distribution, leading
420 to short-term performance variations and reward instability.

422 5.2 CONCLUSION
423

424 This study highlights the significant impact of hyperparameter tuning on the performance of the
425 DQN algorithm and its variants in the FrozenLake-v1 environment. The results show that Duel-
426 ing DQN provides superior stability, faster convergence, and better adaptability across different
427 hyperparameter configurations compared to DQN and Double DQN. Specifically, it excels in high-
428 dimensional action spaces and under varying exploration and exploitation settings. The analysis
429 also sheds light on the underlying reasons for reward fluctuations despite decreasing loss, empha-
430 sizing the importance of balancing exploration and exploitation, managing replay buffer diversity,
431 and addressing local optima jumps. Future work could further refine these models by incorporating
advanced optimization methods and exploring their application in more complex environments.

432 **REFERENCES**
433

434 [1] Volodymyr Mnih. Playing atari with deep reinforcement learning. *arXiv preprint*
435 *arXiv:1312.5602*, 2013.

436 [2] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
437 q-learning. In *Proceedings of the AAAI conference on artificial intelligence*, volume 30, 2016.

438 [3] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Du-
439 eling network architectures for deep reinforcement learning. In *International conference on*
440 *machine learning*, pages 1995–2003. PMLR, 2016.

441

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485